[1]
Yavarina, N., Alveroglu, E., Celebioglu, N., Siklar, U., and Yilmaz, Y., Effect of Temperature, Stirring Velocity and Reactant Concentration on the Size and the Optical Properties of ZnO Nanoparticles, J. Lumin. 135 (2013) 170-177.
DOI: 10.1016/j.jlumin.2012.10.047
Google Scholar
[2]
Hong, Z., Xiaofei, L. and Stephen, D.T., 2008, Control of Nanoparticle Size and Agglomeration through Electric-Field-Enhanced Flame Synthesis, J. Nanopart. Res. 10 (2008) 907-923.
DOI: 10.1007/s11051-007-9330-7
Google Scholar
[3]
Patil, S.R., Hameed, B.H., Skapin, A.S., Stangar, U.L., Alternate Coating and Porosity as Dependent Factors for the Photocatalytic Activity of Sol-gel Derived TiO2 Films, Chem. Eng. J. 174 (2011)190-198.
DOI: 10.1016/j.cej.2011.08.074
Google Scholar
[4]
Duhan, S., Aghamkar, P., and Lal, B., Influence of Temperature and Time on Nd-doped Silica Powder Prepared by the Sol-Gel Process, J. Alloys Compd. 474 (2009) 301-305.
DOI: 10.1016/j.jallcom.2008.06.095
Google Scholar
[5]
Chiang, Y.D., Lian, H.Y., Leo, S.Y., Wang, S.G., Yamauchi, Y., and Kevin, C.W.W., 2013, Controlling Particle Size and Structural Properties of Mesoporous Silica Nanoparticles Using the Taguchi, J. Phys. Chem., 115 (2013) 13158-13165.
DOI: 10.1021/jp201017e
Google Scholar
[6]
Hassan Soleimani, Noorhana Yahya, Noor Rasyada Ahmad Latiff, Hasnah Mohd Zaid, Birol Demiral and Jamshid Amighian, Novel Enhanced Oil Recovery Method using Co2+xFe2+1-xFe3+2O4 as Magnetic Nanoparticles Activated by Electromagnetic Waves", J. Nano Res., 26 (2014).
DOI: 10.1109/natpc.2011.6136450
Google Scholar
[7]
Hassan Soleimani, Noor Rasyada Ahmad Latiff, Noorhana Yahya, Hasnah M Zaid, Maziyar Sabet, Beh Hoe Guan, Lee Kean Chuan, Effect of Annealing Temperature on the Crystallization of Hematite-Alumina (Fe2O3-Al2O3 ) Nanocomposite and Its Influence in EOR Application, J. Nano Res. 29 (2014).
DOI: 10.4028/www.scientific.net/jnanor.29.105
Google Scholar
[8]
H. Mohd Zaid, W. A. Wan Azahar, H. Soleimani, N.R. Ahmad Latiff, A. Shafie, K.C. Lee, H.G. Beh, Effect of Nickel: Zinc Ratio in Nickel-Zinc-Ferrite Nanoparticles as Surfactant on Recovery Efficiency in Enhanced Oil Recovery, J. Nano Res. 29 (2014).
DOI: 10.4028/www.scientific.net/jnanor.29.115
Google Scholar
[9]
Beh Hoe Guan, Hassan Soleimani, Noorhana Yahya and Noor Rasyada Ahmad Latiff, Phase Evolution and Crystallite Size of Ni0. 25Zn0. 75Fe2O4 at Different Calcination Temperatures, Adv. Mat. Res. 925 (2014) 290-294.
DOI: 10.4028/www.scientific.net/amr.925.290
Google Scholar
[10]
N.A. Ogolo, O.A. Olafuyi, and M.O. Onyekonwu, Enhanced Oil Recovery Using Nanoparticles, Paper SPE 160847, presented at the SPE Saudi Arabian Section Technical Symposium and Exhibition 8-11 April (2012).
DOI: 10.2118/160847-ms
Google Scholar
[11]
Yahya, N., Kashif, M., Nasir, N., Akhtar, M.N., and Yusof, N.M., Cobalt Ferrite Nanoparticles: An Innovative Approach for Enhanced Oil Recovery Application, J. Nano Res. 17 (2012) 115-126.
DOI: 10.4028/www.scientific.net/jnanor.17.115
Google Scholar
[12]
Zaid, H.M., Yahya, N., and Latiff, N.R.A., 2013, The Effect of Nanoparticles Crystallite Size on the Recovery Efficiency in Dielectric Nanofluid Flooding, J. Nano Res. 21 (2013) 103-108.
DOI: 10.4028/www.scientific.net/jnanor.21.103
Google Scholar
[13]
Latiff, N.R.A. et. al, 2011, "Novel Enhanced Oil Recovery Method using Dielectric Zinc Oxide Nanoparticles Activated by Electromagnetic Waves, National Postgraduate Conference (NPC), 2011, IEEE.
DOI: 10.1109/natpc.2011.6136450
Google Scholar
[14]
Abdelrahman, I.E., and Adel, M.S.R., Applications of Nanotechnology in the Oil & Gas Industry: Latest Trends Worlwide & Future Challenges in Egypt, North Africa Technical Conference and Exhibition, Cairo, Egypt, (2013).
Google Scholar
[15]
Albertsson, J., Abrahams, S.C., Kvick, A., Acta Crystallogr., Sec. B: Struct. Sci. 45, (1989) 34-40.
Google Scholar