Electrochemical Behaviour of Cr and W Fischer Ethoxy Carbene Complexes: A Comparative Study

Article Preview

Abstract:

A comparative electrochemical study of a series Fischer carbene complexes (FCCs) of Cr and W containing an ethoxy and an aryl group as carbene substituents, showed that the Cr-FCCs generally exhibit two one-electron oxidation processes, namely Cr (0) to Cr (I) to Cr (II) while W-FCCs are oxidized in two two-electron oxidation processes, namely W(0) to W(II) to W(IV). The first one-electron oxidation processes of Cr-FCCs is generally reversible, while the first two-electron oxidation processes of all W-FCCs are found to be irreversible. The first reduction process observed for both the W-FCCs and Cr-FCCs is a one-electron process located on the carbene ligand. Both the metal oxidation, as well as the carbene reduction of Cr-FCCs, occurs at lower potentials than for W-FCCs. Substitution of carbonyls coordinated to the metal, or the group attached to the carbene ligand, led to similar trends related to the ease of oxidation or reduction of Cr-FCC and W-FCCs. Density functional theory calculations support and led to a better understanding of experimental electrochemical behaviour.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-9

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.O. Fischer, A. Maasböl, Zur Frage eines Wolfram-Carbonyl-Carben-Komplexes, Angew. Chem. 76 (1964) 645-645.

DOI: 10.1002/ange.19640761405

Google Scholar

[2] H. G. Raubenheimer, Fischer carbene complexes remain favourite targets, and vehicles for new discoveries, J. Chem. Soc., Dalton Trans. 43, (2014) 16959- 16973.

DOI: 10.1039/c4dt01943a

Google Scholar

[3] (a) K.H. Dötz, Carbene Complexes in Organic Synthesis New Synthetic Methods, Angew. Chem. Int. Ed. Engl. 23 (1984).

DOI: 10.1002/anie.198405871

Google Scholar

[4] K.J. Ivin, Olefin metathesis and metathesis polymerization, Academic Press (San Diego), (1997).

Google Scholar

[5] J.I. du Toit, 'n Modelleringsondersoek na die meganisme van die homogene alkeenmetatesereaksie, M. Sc. dissertation (Chemistry)-North-West University, Potchefstroom Campus, 2010. URI: http: /hdl. handle. net/10394/4408.

Google Scholar

[6] (a) R. Metelková, T. Tobrman, H. Kvapilová, I. Hoskovcová, J. Ludvík, Synthesis, characterization and electrochemical investigation of hetaryl chromium(0) aminocarbene complexes, Electrochim. Acta 82 (2012).

DOI: 10.1016/j.electacta.2012.05.027

Google Scholar

[7] M. Landman, B.E. Buitendach, M.M. Conradie, R. Fraser, P.H. van Rooyen, J. Conradie, Fischer mono and biscarbene complexes of tungsten with mono and dimeric heteroaromatic substituents, J. Electroanal. Chem. 739 (2015) 202-210.

DOI: 10.1016/j.jelechem.2014.12.019

Google Scholar

[8] W Buchner, W.A. Schenk, Carbon-13 NMR spectra of monosubstituted tungsten carbonyl complexes. NMR trans influence in octahedral tungsten (0) compounds, Inorg. Chem. 23 (1984) 132-137.

DOI: 10.1021/ic00170a004

Google Scholar

[9] C. Baldoli, P. Cerea, L. Falciola, C. Giannini, E. Licandro, S. Maiorana, P. Mussini, D. Perdicchia, The electrochemical activity of heteroatom-stabilized Fischer-type carbene complexes, J. Organomet. Chem. 690 (2005) 5777-5787.

DOI: 10.1016/j.jorganchem.2005.07.048

Google Scholar

[10] I. Hoskovcová, J. Roháčová, D. Dvořák, T. Tobrman, S. Záliš, R. Zvĕřinová, J. Ludvík, Synthesis and electrochemical study of iron, chromium and tungsten aminocarbenes: Role of ligand structure and central metal nature, Electrochim. Acta 55 (2010).

DOI: 10.1016/j.electacta.2010.02.057

Google Scholar

[11] G.A. Mabbott, An introduction to cyclic voltammetry, J. Chem. Ed. 60 (1983) 697-702.

Google Scholar

[12] P.T. Kissinger, W.R. Heineman, Cyclic voltammetry, J. Chem. Ed., 60 (1983) 702-706.

Google Scholar

[13] H.J. Gericke, N.I. Barnard, E. Erasmus, J.C. Swarts, M.J. Cook, M.A.S. Aquino, Solvent and electrolyte effects in enhancing the identification of intramolecular electronic communication in a multi redox-active diruthenium tetraferrocenoate complex, a triple-sandwiched dicadmium phthalocyanine and a ruthenocenecontaining b-diketone, Inorg. Chim. Acta 363 (2010).

DOI: 10.1016/j.ica.2010.03.031

Google Scholar

[14] J.J. van Benschoten, J.Y. Lewis, W.R. Heineman, D.A. Roston, P.T. Kissinger, Cyclic voltammetry experiment, J. Chem. Ed. 60 (1983) 772-776.

DOI: 10.1021/ed060p772

Google Scholar

[15] D.A. Skoog, D.M. West, F.J. Holler, Fundamentals of Analytical Chemistry (7th edition), Saunders College Publishing, Fort Worth, 1991, pp.468-469.

Google Scholar

[16] M. Landman, T. Levell, Buitendach, M.M. Conradie, J. Conradie, Effect of CO substitution on the redox properties of Fischer Mo(0) carbene complexes Mo(CO)5=C(Y)(2-Furyl), Y = OEt, NHCy or NH2. Electrochim. Acta 174 (2015) 282–289.

DOI: 10.1016/j.electacta.2015.05.191

Google Scholar

[17] (a) M. Landman, R. Lui, P.H. van Rooyen, J. Conradie, Electrochemistry of Fischer alkoxycarbene complexes of chromium: The use of DFT to predict and understand oxidation and reduction potentials, Electrochim. Acta 114 (2013).

DOI: 10.1016/j.electacta.2013.10.013

Google Scholar

[18] (a) M. Landman, R. Pretorius, B.E. Buitendach, P.H. van Rooyen, J. Conradie, Synthesis, structure and electrochemistry of Fischer alkoxy- and aminocarbene complexes of tungsten: The use of DFT to predict and understand oxidation and reduction potentials, Organometallics 32 (2013).

DOI: 10.1021/om400778z

Google Scholar

[19] A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behaviour, Physical Review A 38 (1988) 3098-3100.

DOI: 10.1103/physreva.38.3098

Google Scholar

[20] C.T. Lee, W.T. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density, Physical Review B 37 (1988) 785-789.

DOI: 10.1103/physrevb.37.785

Google Scholar

[21] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery (Jr), J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision D. 01, Gaussian Inc., Wallingford CT, (2010).

Google Scholar

[22] F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, Physical Chemistry Chemical Physics 7 (2005) 3297-3305.

DOI: 10.1039/b508541a

Google Scholar