[1]
E.O. Fischer, A. Maasböl, Zur Frage eines Wolfram-Carbonyl-Carben-Komplexes, Angew. Chem. 76 (1964) 645-645.
DOI: 10.1002/ange.19640761405
Google Scholar
[2]
H. G. Raubenheimer, Fischer carbene complexes remain favourite targets, and vehicles for new discoveries, J. Chem. Soc., Dalton Trans. 43, (2014) 16959- 16973.
DOI: 10.1039/c4dt01943a
Google Scholar
[3]
(a) K.H. Dötz, Carbene Complexes in Organic Synthesis New Synthetic Methods, Angew. Chem. Int. Ed. Engl. 23 (1984).
DOI: 10.1002/anie.198405871
Google Scholar
[4]
K.J. Ivin, Olefin metathesis and metathesis polymerization, Academic Press (San Diego), (1997).
Google Scholar
[5]
J.I. du Toit, 'n Modelleringsondersoek na die meganisme van die homogene alkeenmetatesereaksie, M. Sc. dissertation (Chemistry)-North-West University, Potchefstroom Campus, 2010. URI: http: /hdl. handle. net/10394/4408.
Google Scholar
[6]
(a) R. Metelková, T. Tobrman, H. Kvapilová, I. Hoskovcová, J. Ludvík, Synthesis, characterization and electrochemical investigation of hetaryl chromium(0) aminocarbene complexes, Electrochim. Acta 82 (2012).
DOI: 10.1016/j.electacta.2012.05.027
Google Scholar
[7]
M. Landman, B.E. Buitendach, M.M. Conradie, R. Fraser, P.H. van Rooyen, J. Conradie, Fischer mono and biscarbene complexes of tungsten with mono and dimeric heteroaromatic substituents, J. Electroanal. Chem. 739 (2015) 202-210.
DOI: 10.1016/j.jelechem.2014.12.019
Google Scholar
[8]
W Buchner, W.A. Schenk, Carbon-13 NMR spectra of monosubstituted tungsten carbonyl complexes. NMR trans influence in octahedral tungsten (0) compounds, Inorg. Chem. 23 (1984) 132-137.
DOI: 10.1021/ic00170a004
Google Scholar
[9]
C. Baldoli, P. Cerea, L. Falciola, C. Giannini, E. Licandro, S. Maiorana, P. Mussini, D. Perdicchia, The electrochemical activity of heteroatom-stabilized Fischer-type carbene complexes, J. Organomet. Chem. 690 (2005) 5777-5787.
DOI: 10.1016/j.jorganchem.2005.07.048
Google Scholar
[10]
I. Hoskovcová, J. Roháčová, D. Dvořák, T. Tobrman, S. Záliš, R. Zvĕřinová, J. Ludvík, Synthesis and electrochemical study of iron, chromium and tungsten aminocarbenes: Role of ligand structure and central metal nature, Electrochim. Acta 55 (2010).
DOI: 10.1016/j.electacta.2010.02.057
Google Scholar
[11]
G.A. Mabbott, An introduction to cyclic voltammetry, J. Chem. Ed. 60 (1983) 697-702.
Google Scholar
[12]
P.T. Kissinger, W.R. Heineman, Cyclic voltammetry, J. Chem. Ed., 60 (1983) 702-706.
Google Scholar
[13]
H.J. Gericke, N.I. Barnard, E. Erasmus, J.C. Swarts, M.J. Cook, M.A.S. Aquino, Solvent and electrolyte effects in enhancing the identification of intramolecular electronic communication in a multi redox-active diruthenium tetraferrocenoate complex, a triple-sandwiched dicadmium phthalocyanine and a ruthenocenecontaining b-diketone, Inorg. Chim. Acta 363 (2010).
DOI: 10.1016/j.ica.2010.03.031
Google Scholar
[14]
J.J. van Benschoten, J.Y. Lewis, W.R. Heineman, D.A. Roston, P.T. Kissinger, Cyclic voltammetry experiment, J. Chem. Ed. 60 (1983) 772-776.
DOI: 10.1021/ed060p772
Google Scholar
[15]
D.A. Skoog, D.M. West, F.J. Holler, Fundamentals of Analytical Chemistry (7th edition), Saunders College Publishing, Fort Worth, 1991, pp.468-469.
Google Scholar
[16]
M. Landman, T. Levell, Buitendach, M.M. Conradie, J. Conradie, Effect of CO substitution on the redox properties of Fischer Mo(0) carbene complexes Mo(CO)5=C(Y)(2-Furyl), Y = OEt, NHCy or NH2. Electrochim. Acta 174 (2015) 282–289.
DOI: 10.1016/j.electacta.2015.05.191
Google Scholar
[17]
(a) M. Landman, R. Lui, P.H. van Rooyen, J. Conradie, Electrochemistry of Fischer alkoxycarbene complexes of chromium: The use of DFT to predict and understand oxidation and reduction potentials, Electrochim. Acta 114 (2013).
DOI: 10.1016/j.electacta.2013.10.013
Google Scholar
[18]
(a) M. Landman, R. Pretorius, B.E. Buitendach, P.H. van Rooyen, J. Conradie, Synthesis, structure and electrochemistry of Fischer alkoxy- and aminocarbene complexes of tungsten: The use of DFT to predict and understand oxidation and reduction potentials, Organometallics 32 (2013).
DOI: 10.1021/om400778z
Google Scholar
[19]
A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behaviour, Physical Review A 38 (1988) 3098-3100.
DOI: 10.1103/physreva.38.3098
Google Scholar
[20]
C.T. Lee, W.T. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density, Physical Review B 37 (1988) 785-789.
DOI: 10.1103/physrevb.37.785
Google Scholar
[21]
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery (Jr), J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision D. 01, Gaussian Inc., Wallingford CT, (2010).
Google Scholar
[22]
F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, Physical Chemistry Chemical Physics 7 (2005) 3297-3305.
DOI: 10.1039/b508541a
Google Scholar