Electrochemical Studies on Novel LiMnPO4 Coated with Magnesium Oxide-Gold Composite Thin Film in Aqueous Electrolytes

Article Preview

Abstract:

Abstract. Pristine LiMnPO4 and LiMnPO4/Mg-Au composite cathode materials were synthesized and their electrochemical properties interrogated using voltammetric, spectroscopic and microscopic techniques. The composite cathode exhibited better reversibility and kinetics than the pristine LiMnPO4. This was demonstrated in the values of the diffusion coefficient (D) and the charge and discharge capacities determined through cyclic voltammetry. For the composite cathode, D = 2.0 x 10-9 cm2/s while the pristine has a D value of 4.81 x 10-10 cm2/s. The charge and discharge capacities of LiMnPO4/Mg-Au at 10 mV/s were 259.9 mAh/g and 157.6 mAh/g, respectively. The corresponding values for pristine LiMnPO4 were 115 mAh/g and 44.75 mAh/g, respectively.. A similar trend was observed in the results obtained from electrochemical impedance spectroscopy measurements. These results indicate that LiMnPO4/Mg-Au composite has better conductivity and will facilitate faster electron transfer and better electrochemical performance than pristine LiMnPO4.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

90-99

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Aravindan, J. Gnanaraj, Y. Lee, S. Madhavi, LiMnPO4 - A next generation cathode material for lithium-ion batteries, J. Mater. Chem. 1 (2013) 3518-3539.

DOI: 10.1039/c2ta01393b

Google Scholar

[2] S. K. Martha, B. Markovsky, J. Grinblat, Y. Gofer, O. Haik, E. Zinigrad, D. Aurbach, T. Drezen, D. Wang, G. Deghenghi, I. Exnar, LiMnPO4 as an Advanced Cathode Material for Rechargeable Lithium Batteries . J. Electrochem. Soc. 156 (2009).

DOI: 10.1149/1.3125765

Google Scholar

[3] V. Ramar, K. Saravanan, S.R. Gajjela, S. Hariharan, P. Balaya, The effect of synthesis parameters on the lithium storage performance of LiMnPO4/C. Electrochimica Acta 105 (2013) 496–505.

DOI: 10.1016/j.electacta.2013.05.025

Google Scholar

[4] H. Fang, L. Li, Y. Yang, G. Yan, G. Li, The possibility of manganese disorder in LiMnPO4 and its effect on the electrochemical activity. Electrochem. Commun. 10 (2008) 1071-1073.

DOI: 10.1016/j.elecom.2008.05.010

Google Scholar

[5] Y. Hong, Z Tang, Z. Zhang, Enhanced electrochemical properties of LiMnPO4/C composites by tailoring polydopamine-derived carbon coating. Electrochimica Acta 176 (2015) 369–377.

DOI: 10.1016/j.electacta.2015.07.018

Google Scholar

[6] L. Kou, F. Chen, F. Tao, Y. Dong, L. Chen, High rate capability and cycle performance of Ce-doped LiMnPO4/C via an efficient solvothermal synthesis in water/diethylene glycol system. Electrochimica Acta 173 (2015) 721–727.

DOI: 10.1016/j.electacta.2015.05.087

Google Scholar

[7] F. Wang, J. Yang, P. Gao, Y. NuLi, J. Wang, Morphology regulation and carbon coating of LiMnPO4 cathode material for enhanced electrochemical performance. J. Power Sources 196 (2011) 10258–10262.

DOI: 10.1016/j.jpowsour.2011.08.090

Google Scholar

[8] J. Liu, X. Liu, T. Huang, A. Yu, Synthesis of nano-sized LiMnPO4 and in situ carbon coating using a solvothermal method . J. Power Sources 229 (2013) 203-209.

DOI: 10.1016/j.jpowsour.2012.11.093

Google Scholar

[9] Z. Qin, X. Zhou, Y. Xia, C. Tang, Z. Liu, Morphology controlled synthesis and modification of high-performance LiMnPO4 cathode materials for Li-ion batteries. J. Mater Chem. 22 (2012) 21144-21153.

DOI: 10.1039/c2jm30821e

Google Scholar

[10] M. Zhao, Y. Fu,   N. Xu, G. Li, M. Wu, X. Gao, High performance LiMnPO4/C prepared by a crystallite size control method. J. Mater. Chem. 2 (2014) 15070-15077.

DOI: 10.1039/c4ta03311f

Google Scholar

[11] J. O. Herrera, H. Camacho-Montes, L. E. Fuentes, L. Álvarez-Contreras, LiMnPO4: Review on Synthesis and Electrochemical Properties. J. Mater. Sci. and Chemical Engineering. 3 (2015) 54-64.

Google Scholar

[12] D. Choi, D. Wang,I. Bae, J. Xiao, Z. Nie, W. Wang, V. V. Viswanathan, Y.J. Lee, J. Zhang, G. L. Graff, Z. Yang, J. Liu, LiMnPO4 Nanoplate Grown via Solid-State Reaction in Molten Hydrocarbon for Li-Ion Battery Cathode. Nano Lett. 10 (2010).

DOI: 10.1021/nl1007085

Google Scholar

[13] D. Wanga, H. Buqa, M. Crouzet , G. Deghenghi , T. Drezenb, I. Exnar , N. Kwon, J. H. Miners, L. Poletto , M. Grätzel, High-performance, nano-structured LiMnPO4 synthesized via a polyol method. J. Power Sources 189 (2009) 624-628.

DOI: 10.1016/j.jpowsour.2008.09.077

Google Scholar

[14] S. Zhang, F. L. Meng, Q. Wu, F. L. Liu, H. Gao, M. Zhang, C. Deng, Synthesis and Characterization of LiMnPO4 Nanoparticles Prepared by a Citric Acid Assisted Sol-Gel Method. Int. J. Electrochem. Sci. 8 (2013) 6603 - 6609.

DOI: 10.1016/s1452-3981(23)14790-0

Google Scholar

[15] X. Pana, C. Xua, D. Honga, H. Fanga, L. Zhen, Hydrothermal synthesis of well-dispersed LiMnPO4 plates for lithium ion batteries cathode . Electrochimica Acta 87 (2013) 303–30.

DOI: 10.1016/j.electacta.2012.09.106

Google Scholar

[16] K. Wang, Y. Wang, C. Wang, Y. Xia, Graphene oxide assisted solvothermal synthesis of LiMnPO4 naonplates cathode materials for lithium ion batteries. Electrochimica Acta 146 (2014) 8–14.

DOI: 10.1016/j.electacta.2014.09.032

Google Scholar

[17] H. Yi, C. Hu, H. Fang , B. Yang, Y. Yao, W. Ma, Y. Dai, Electrochemical Performance of LiMn0. 9Fe0. 09Mg0. 01PO4/C Synthesized Under Vacuum Condition. Int. J. Electrochem. Sci. 7 (2012) 663 - 670.

DOI: 10.1016/s1452-3981(23)13367-0

Google Scholar

[18] R. Pitchai, V Thavasi, S.G. Mhaisalkar, S. Ramakrishna, Nanostructured cathode materials: a key for better performance in Li-ion batteries. J. Mater Chem. 21 (2011) 11040-11051.

DOI: 10.1039/c1jm10857c

Google Scholar

[19] K.K. Chae, Gold nanoparticles in delivery application. Advanced Drug Delivery Reviews 60 (2008) 1307–1315.

Google Scholar

[20] N. N. Long, L. Van Vu, C. D. Kiem, S. C. Doanh, C. T. Nguyet, P. T. Hang, N. D. Thien, and L. M. Quynh, Synthesis and optical properties of colloidal gold nanoparticles, J. Phys. Conf. Ser. 187 (2009) 012026.

DOI: 10.1088/1742-6596/187/1/012026

Google Scholar

[21] H. W. Kim, S. H. Shim, J. W. Lee, and C. Lee, "Controlled Growth and Characterization of MgO Nanowires by Varying the Thickness of the Underlying Au Layers, J. of the korean Phys. Soc. 51 (2007) 204–208.

DOI: 10.3938/jkps.51.204

Google Scholar

[22] L. A. Ma, Z. X. Lin, J. Y. Lin, Y. A. Zhang, L. Q. Hu, and T. L. Guo, Large-scale growth of ultrathin MgO nanowires and evaluate their field emission properties, Phys. E Low-dimensional Syst. Nanostructures 41 (2009) 1500–1503.

DOI: 10.1016/j.physe.2009.04.028

Google Scholar

[23] K. Nagashima, T. Yanagida, H. Tanaka, and T. Kawai, Control of magnesium oxide nanowire morphologies by ambient temperature, Appl. Phys. Lett. 90 (2007) 4–6, (2007).

DOI: 10.1063/1.2746086

Google Scholar

[24] H. W. Kim and S. H. Shim, Growth of MgO nanowires assisted by the annealing treatment of Au-coated substrates, Chem. Phys. Lett. 422 (2006) 165–169.

DOI: 10.1016/j.cplett.2006.02.062

Google Scholar

[25] D. Fujimoto , N. Kuwata , Y. Matsuda, J. Kawamura , F. Kang, Fabrication of solid-state thin-film batteries using LiMnPO4 thin films deposited by pulsed laser deposition. Thin Solid Films 579 (2015) 81–88.

DOI: 10.1016/j.tsf.2015.02.041

Google Scholar

[26] M. Zhao, G. Huang, B. Zhang, F. Wang, X. Song, Characteristics and electrochemical performance of LiFe0. 5Mn0. 5PO4/C used as cathode for aqueous rechargeable lithium battery. J. Power Sources. 211 (2012) 202-207.

DOI: 10.1016/j.jpowsour.2012.03.049

Google Scholar

[27] P.R. Kumar, Carbon coated LiMnPO4 nanorods for lithium batteries. J. Electrochem. Soc. 158 (2011) A227-A230.

Google Scholar

[28] T. Drezen, N. -H. Kwon, P. Bowen, I. Teerlinck, M. Isono, and I. Exnar, Effect of particle size on LiMnPO4 cathode. J. Power Sources 174 (2007) 949-953.

DOI: 10.1016/j.jpowsour.2007.06.203

Google Scholar

[29] Z. Pei, X. Zhang, and X. Gao, Shape-controlled synthesis of LiMnPO4 porous nanowires. J. Alloy Compd 546 (2013) 92-94.

DOI: 10.1016/j.jallcom.2012.08.080

Google Scholar

[30] H. Manjunatha, T.V. Venkatesha, G.S. Sureshi, Electrochemical studies of LiMnPO4 as aqueous rechargeable lithium–ion battery electrode. Journal of Solid State Electrochemistry16 (2012) 1941–(1952).

DOI: 10.1007/s10008-011-1593-3

Google Scholar

[31] Minakshi, M., Pandey, A., Blackford, M. & Ionescu, M., Effect of TiS2 Additive on LiMnPO4 Cathode in Aqueous Solutions. Energy & Fuels 24 (2010) 6193–6197.

DOI: 10.1021/ef101063h

Google Scholar

[32] C.O. Ikpo, C.J. Jafta, K.I. Ozoemena, N. West, N. Njomo, N. Jahed, P.G. Baker, Emmanuel I Iwuoha, Novel Iron-Cobalt Derivatised Lithium Iron Phosphate Nanocomposite for Lithium Ion Battery Cathode. Int. J. Electrochem. Sci. 8 (2013) 753-772.

DOI: 10.1016/s1452-3981(23)14055-7

Google Scholar

[33] M. Minakshi, P. Singh, S. Thurgate, K. Prince, Electrochemical Behavior of Olivine-Type LiMnPO4 in Aqueous Solutions. Electrochem. Solid-State Lett. 10 (2006): A471-A474.

DOI: 10.1149/1.2236379

Google Scholar