Bimetallic Nanocomposites of Palladium (100) and Ruthenium for Electrooxidation of Ammonia

Article Preview

Abstract:

Symmmetrically oriented Pd (100) and its bimetallic Pd (100)Ru electrocatalysts were chemically synthesized and their conductive properties employed in the electrochemical oxidation of ammonia. Electrochemical data based on EIS, SWV and CV revealed that the Pt/Pd (100)Ru electrode showed a better conductivity and higher catalytic response towards the electrooxidation of ammonia compared to Pt/Pd (100) electrode. This was demonstrated by the EIS results where Pt/Pd (100)Ru gave a charge transfer resistance (Rct) of 48.64 Ω, high exchange current and lower time constant (5.2738 x 10-1A and 3.2802 x 10-7 s /rad) values while the Pt/Pd (100) had values of 173.2 Ω, 1.4811 x 10-1A and 4.8321 10-7 s /rad. The drastic drop in Rct highlights the superiority of the Pt/Pd (100)Ru over the Pt/Pd (100) and confirms that facile interfacial electron transfer processes occur on the Pt/Pd (100)Ru electrode during the electrocatalytic ammonia oxidation. Investigations through voltammetry revealed that the Pt/Pd (100)Ru had a higher peak current density and a shift in potential to more negative values at ≈ -0.2 V and ≈ -0.4 V. The EASA value of Pt/Pd (100)Ru was found to be 119.24 cm2 whereas Pt/Pd (100) had value of 75.07 cm2. The high electrochemically active surface area of Pd (100)Ru at 119.24 cm2 compared to the 75.07 cm2 for Pd (100) strengthened this observation in performance between the two catalysts for ammonia electrooxidation.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] C. Manhuan, Z. Mingshan, D. Yukou and Y. Ping, Int. J. Hydrogen Energy 38 (2013) 8631-8638.

Google Scholar

[2] S. K. Ghosh, M. Mandal, S. Kundu, S. Nath and T. Pal, Appl. Catal. A 268 (2004) 61-66.

Google Scholar

[3] L. Wu-Jun, Q. Ting-Ting and J. Hong, Chem. Eng. J. 236 (2013) 448-463.

Google Scholar

[4] D. Abhijit and D. Jayati, Int. J. Hydrogen Energy 38 (2013) 7789-7800.

Google Scholar

[5] C. Kuan-Jung, L. Chia-Feng, J. Rick, W. Shih-Han, L. Chung-Chiun and H. Bing-Joe, Biosensors and Bioelectronics 33 (2012) 75-81.

Google Scholar

[6] K. Agnieszka, C. Audrey, N. Stefano, C. Christos, W. Michael and M. U. Kai, Electrochem. Commun., 12 (2010) 18-21.

Google Scholar

[7] K. Agnieszka, Stéphane, F. Zacharias, K. Alexandros, N. Stefano, F. Olivier and d. R. Nico, Electrochim. Act. 56 (2011) 1361-1365.

Google Scholar

[8] F. Vidal-Iglesias, J. Solla-Gullon, V. Montiel, J. M. Feliu and A. Aldaz, J. Power Sources 171(2007) 448-456.

DOI: 10.1016/j.jpowsour.2007.06.015

Google Scholar

[9] J. Mingshang, L. Hongyang, Z. Hui, X. Zhaoxiong, L. Jingyue and X. Younan, Nano Res 4 (2011) 83-91.

Google Scholar

[10] H. Erikson, A. Sarapuu, N. Alexeyeva, K. Tammeveski, J. Solla-Gullón and J. M. Feliu, Electrochim. Act. 59 (2012) 329-335.

DOI: 10.1016/j.electacta.2011.10.074

Google Scholar

[11] J. Francisco, M. Rosa, S.G. Jose, G. Emmanuel, H. Enrique, A. Antonio and M. F. Juan, Phy. Chem. Chem. Phy. 14 (2012) 10258-10265.

Google Scholar

[12] D. S. Sheny, D. Philip and J. Mathew, Spectrochim. Act. Part A 91 (2012) 35-38.

Google Scholar

[13] M. M. Kumari, S. A. Aromal and D. Philip, Spectrochim. Act. Part A 103 (2013) 130-133.

Google Scholar

[14] B. Patil, S. R. Lanke, K. M. Deshmukh, A. B. Pandit and B. M. Bhanage, Mater. Lett. 79 (2012) 1-3.

Google Scholar

[15] C. L. Lee, H.P. Chiou and C.R. Liu, Int. J. Hydrogen Energy 37 (2012) 3993-3997.

Google Scholar

[16] Y. H. Qin, Y. B. Jia, Y. Jiang, D. F. Niu, X. S. Zhang, X. G. Zhou, L. Niu and W. K. Yuan, Int. J. Hydrogen Energy 37 (2012) 7373-7377.

Google Scholar

[17] Z. Sun, Z. Liu, B. Han, S. Miao, J. Du and Z. Miao, Carbon 44 (2006) 888-893.

Google Scholar

[18] G.Y. Yu, W. X. Chen, Y. F. Zheng, J. Zhao, X. Li and Z. D. Xu, Mater. Lett. 60 (2006) 2453-2456.

Google Scholar

[19] G. P. An. Yu, L K. Mao, Z. Sun, Z. Liu and S. Miao, Carbon 45 (2007) 536-542.

Google Scholar

[20] R. Awasthi and R. N. Singh, Int. J. Hydrogen Energy 37 (2012) 2103-2110.

Google Scholar

[21] M. Anuradha, J. Debrina and D. Goutam, Ind. Eng. Chem. Res, 52 (2013) 15817-15823.

Google Scholar

[22] Z. X. Liang, T. S. Zhao, J. B. Xu and L. D. Zhu, Electrochim. Act. 54 (2009) 2203-2208.

Google Scholar

[23] Y. H. Zhirong Sun, M. Gao, X. Wei and X. Hu, Int. J. Electrochem. Sci. 6 (2011) 5626-5638.

Google Scholar

[24] Y. Wei, H. Wang and K. Li, J. Rare Earths 28 (2010) 560-565.

Google Scholar

[25] S. Hyun-Kon, Y. Jung, K. Lee and L. H. Dao, Electrochim. Act. 44 (1999) 3513-3519.

Google Scholar

[26] Z. Guzel, J. Galandova, J. Labuda , Int. J. Electrochem. Sci., 3(2008) 223-235.

Google Scholar

[27] S. K. Mishra, D. Kumar , A. M. Biradar and Rajesh, Bioelectrochemistry 88 (2012) 118-126.

Google Scholar

[28] S. Wataru, H. Iwata, K. Yokoshima, Y. Murakami, Y. Takasu, J. Phys. Chem. 109 (2005) 7330-7338.

Google Scholar

[29] D. Luis, V. M. Ana, M. Madhivanan and G. B. Gerardine, Electrochim. Acta. 89 (2013): 413-421.

Google Scholar

[30] Y. H Zhirong Sun, Ming Gao, Xuefeng Wei, Xiang Hu, Int. J. Electrochem. Sci. 6 (2011) 5626-5638.

Google Scholar

[31] Z. Liu, X.Y. Ling, B. Guo, L. Hong and J.Y. Lee, J. Power Sources 167 (2007) 272-280.

Google Scholar

[32] Y. Wang, Y. Zhoa, J. Yin, M. Liu, Q. Dong and Y. Su, Int. J. Hydrogen Energy 39 (2014) 1325-1335.

Google Scholar

[33] V. C. Arnau, H. F. Patricia, E. L. S. Ifan and S. D. Chorkendorff, J. Power Sources 220 (2012) 205-210.

Google Scholar

[34] F Albert, D. C. Riccardo, M. Liberato and P. Teresa, Pharm. Res. 62 (2010) 126-143.

Google Scholar