Application of a Bismuth-Silver Nanosensor for the Simultaneous Determination of Pt-Rh and Pd-Rh Complexes

Article Preview

Abstract:

The present work describes the development of an electrochemical sensor for the simultaneous determination of Pd-Rh and Pt-Rh complexes using a bismuth-silver bimetallic nanofilm modified glassy carbon electrode. The electrochemical sensor was prepared by drop-casting bismuth-silver bimetallic nanoparticles on to glassy carbon electrode surfaces. The HRTEM microscopy and UV-Vis spectroscopy results of the bismuth-silver nanoparticles were compared with other work in literature. The developed nanosensor exhibited a linear working range of 0.4 - 1.4 ng/L for Pd-Rh and 0.8-1.2 ng/L for Pt-Rh DMG complexes, respectively. Very low detection limits (S/N = 3) of 0.19 ng/L for Pd (II), 0.2 ng/L Pt (II) and 0.22 ng/L for Rh (III) were obtained and the sensor was successfully applied to environmental samples.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

126-133

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Christian, F. Von der Kammer, M. Baalousha, T. Hofmann, Nanoparticles: structure, properties, preparation and behaviour in environmental media, Ecotoxicology 17 (2008)326-343.

DOI: 10.1007/s10646-008-0213-1

Google Scholar

[2] R. Handy, F. Von der Kammer, J. Lead, M. Hassellöv, R. Owen, M. Crane, The ecotoxicology and chemistry of manufactured nanoparticles, Ecotoxicology 17 (2008) 287-314.

DOI: 10.1007/s10646-008-0199-8

Google Scholar

[3] M. Auffan, J. Rose, M.R. Wiesner, J-Y. Bottero, Chemical stability of metallic nanoparticles: A parameter controlling their potential cellular toxicity in vitro, Environ. Pollut. 157 (2009) 1127-1133.

DOI: 10.1016/j.envpol.2008.10.002

Google Scholar

[4] S.M. Roopan, G. Rohit, G. Madhumitha, A. Rahuman, C. Kamaraj, A. Bharathi, T.V. Surendra, Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity, Ind. Crop. Prod. 43 (2013).

DOI: 10.1016/j.indcrop.2012.08.013

Google Scholar

[5] C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and Properties of Nanocrystals of Different Shapes, Chem. Rev. 105 (2005) 1025-1102.

DOI: 10.1021/cr030063a

Google Scholar

[6] R. Ferrando, J. Jellinek, R.L. Johnston, Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles, Chem. Rev. 108 (2008) 845-910.

DOI: 10.1021/cr040090g

Google Scholar

[7] J.A. Rodriguez, D.W. Goodman, The Nature of the Metal-Metal Bond in Bimetallic Surfaces, Science 257 (1992) 897–903.

DOI: 10.1126/science.257.5072.897

Google Scholar

[8] F. Tao, M.E. Grass, Y. Zhang, D.R. Butcher, J.R. Renzas, Z. Liu, J. Chung, B.S. Mun, M. Salmeron, G.A. Somorjai, Reaction-Driven Restructuring of Rh-Pd and Pt-Pd Core-Shell Nanoparticles, Science 322 (2008) 932-934.

DOI: 10.1126/science.1164170

Google Scholar

[9] S.M. Roopan, T.V. Surendra, G. Elango, S.H.S. Kumar, Biosynthetic trends and future aspects of bimetallic nanoparticles and its medicinal applications, Appl. Microbiol. Biotechnol. (2014) DOI 10. 1007/s00253-014-5736-1.

DOI: 10.1007/s00253-014-5736-1

Google Scholar

[10] N. Roy, A. Barik, Waste to health: Bioleaching of nanoparticles from e-waste and their medical applications, Int. J. Nanotechnol. Appl. 4 (2010) 95-101.

Google Scholar

[11] S. Anandan, F. Grieser, M. Ashokkumar, Sonochemical synthesis of Au–Ag core–shell bimetallic nanoparticles, J. Phys. Chem. C 112 (2008) 15102-15105.

DOI: 10.1021/jp806960r

Google Scholar

[12] Y-H. Chen, U. Nickel, Superadditive catalysis of homogeneous redox reactions with mixed silver–gold colloids, J. Chem. Soc. Faraday Trans. 89 (1993) 2479-2485.

DOI: 10.1039/ft9938902479

Google Scholar

[13] P. Mulvaney, M. Giersig, A. Henglein, Electrochemistry of multilayer colloids: preparation and absorption spectrum of goldcoated silver particles, J. Phys. Chem. 97 (1993) 7061-7064.

DOI: 10.1021/j100129a022

Google Scholar

[14] D. Radziuk, D. Shchukin, H. Mohwald, H. Sonochemical design of engineered gold–silver nanoparticles, J. Phys. Chem. C 112 (2008) 2462-2468.

DOI: 10.1021/jp710535r

Google Scholar

[15] Y. Sun, Y. Xia, Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium, J. Am. Chem. Soc. 126 (2004) 3892-3901.

DOI: 10.1021/ja039734c

Google Scholar

[16] M. Treguer, C. de Cointet, H. Remita, J. Khatouri, M. Mostafavi, J. Amblard, J. Belloni, Dose rate effects on radiolytic synthesis of gold–silver bimetallic clusters in solution, J. Phys. Chem. B 102 (1998) 4310-4321.

DOI: 10.1021/jp981467n

Google Scholar

[17] M. Moldovani, S. Rauch, M.M. Gomez, M.A. Palacios, G. Morrison, Bioaccumulation of palladium, platinum and rhodium from urban particulates and sediments by the freshwater isopod Asellus Aquaticus, Wat. Res. 35 (2001), 4175-4183.

DOI: 10.1016/s0043-1354(01)00136-1

Google Scholar

[18] R. Schlögl, G. Indlekofer, P. Oelhafen, Mikropartikelemissionen von Verbrennungsmotoren mit Abgasreinigung; Röntgen-Photoelektronenspektroskopie in der Umweltanalytik, Angew. Chem. 99 (1987) 312-322.

DOI: 10.1002/ange.19870990406

Google Scholar

[19] D. Stüben, Th. Kupper, Anthropogenic emission of Pd and traffic-related PGEs-Results based on monitoring with sewage sludge, In: Palladium Emissions in the Environment: Analytical Methods, Environmental Assessment and Health Effects, F. Zereini, F. Alt, Eds. Springer-Verlag: New York, 2006, pp.325-341.

DOI: 10.1007/3-540-29220-9_21

Google Scholar

[20] M. Cubelic, R. Pecoroni, J. Schäfer J.D. Eckhardt, Z. Berner, D. Stüben, Verteilung verkehrsbedingter Edelmetallimmissionen in Böden, Z. Umweltchem. O¬ kotox. 5 (1997) 249-258.

DOI: 10.1007/bf02937903

Google Scholar

[21] A. Golwer, F. Zereini, Einflüsse des Straâenverkehrs auf rezente Sedimentes Langzeitunter suchungenaneinemVersickerbecken bei Frankfurt am Main, Geol. Jb Hessen 126 (1998), 47-70.

Google Scholar

[22] V. Somerset, C. Van der Horst, B. Silwana, C. Walters, E. Iwuoha, Assessment of bioaccumulation of platinum group metals in a river system in close proximity to mining activities in South Africa, NRE, CSIR, Stellenbosch, South Africa, (2011).

Google Scholar

[23] M.A. El Mhammedi, M. Achak, M. Bakasse, A. Chtaini, Electroanalytical method for determination of lead(II) in orange and apple using kaolin modified platinum electrode, Chemosphere 76 (2009) 1130-1134.

DOI: 10.1016/j.chemosphere.2009.04.017

Google Scholar

[24] S. Armenta, S. Garrigues, M. de la Guardia, Green Analytical Chemistry, Trends Anal. Chem. 27 (2008) 497-511.

DOI: 10.1016/j.trac.2008.05.003

Google Scholar

[25] J. Wang, J. Lu, S. Hocevar, P. Farias, B. Ogorevc, Bismuth-Coated Carbon Electrodes for Anodic Stripping Voltammetry, Anal. Chem. 72 (2000) 3218-3222.

DOI: 10.1021/ac000108x

Google Scholar

[26] J. Wang, Stripping Analysis at Bismuth Electrodes: A Review, Electroanalysis 17 (2005) 1341-1346.

DOI: 10.1002/elan.200403270

Google Scholar

[27] A. Economou, Bismuth-film electrodes: recent developments and potentialities for electroanalysis, Trends Anal. Chem. 24 (2005) 334-340.

DOI: 10.1016/j.trac.2004.11.006

Google Scholar

[28] M. Morfobos, A. Anastasios Economou, A. Voulgaropoulos, Simultaneous determination of nickel(II) and cobalt(II) by square wave adsorptive stripping voltammetry on a rotating-disc bismuth-film electrode, Anal. Chim. Acta 519 (2004) 57-64.

DOI: 10.1016/j.aca.2004.05.022

Google Scholar

[29] S. Legeai, S. Bois, O. Vittori, A copper bismuth film electrode for adsorptive cathodic stripping analysis of trace nickel using square wave voltammetry, J. Electroanal. Chem. 591 (2006) 93-98.

DOI: 10.1016/j.jelechem.2006.03.054

Google Scholar

[30] E.A. Hutton, S.B. Hǒcevar, L. Mauko, B. Ogorevc, Bismuth film electrode for anodic stripping voltammetric determination of tin, Anal. Chim. Acta 580 (2006) 244-250.

DOI: 10.1016/j.aca.2006.07.075

Google Scholar

[31] C. Prior, G. Stewart Walker, The Use of the Bismuth Film Electrode for the Anodic Stripping Voltammetric Determination of Tin, Electroanalysis 18(8) (2006) 823-829.

DOI: 10.1002/elan.200503467

Google Scholar

[32] C. Van der Horst, B. Silwana, E. Iwuoha, V. Somerset, Stripping voltammetric determination of palladium, platinum and rhodium in South African water resources, J. Environ. Sci. Health A 47(13) (2012) 2084-(2093).

DOI: 10.1080/10934529.2012.695986

Google Scholar

[33] B. Silwana, C. Van der Horst, E. Iwuoha, V. Somerset, Screen-printed electrodes modified with a bismuth film for stripping voltammetric analysis of platinum group metals in environmental samples, Electrochim. Acta 128 (2014) 119-127.

DOI: 10.1016/j.electacta.2013.11.045

Google Scholar

[34] C. Van der Horst, B. Silwana, E. Iwuoha, V. Somerset, Synthesis and characterisation of bismuth-silver bimetallic nanoparticles for electrochemical sensor applications, Anal. Lett. 48 (2015a) 1-22.

DOI: 10.1080/00032719.2014.979357

Google Scholar

[35] C. Van der Horst, B. Silwana, E. Iwuoha, V. Somerset, Bismuth-silver bimetallic nanosensor application for the voltammetric analysis of dust and soil samples, J. Electroanal. Chem. 752 (2015b) 1-11.

DOI: 10.1016/j.jelechem.2015.06.001

Google Scholar

[36] V. Somerset, B. Silwana, C. Van der Horst, E. Iwuoha, Construction and Evaluation of a Carbon Paste Electrode Modified with Polyaniline-co-poly(dithiodianiline) for Enhanced Stripping Voltammetric Determination of Metal Ions, In: Sensing Electroanalysis, K. Kalcher, R. Metelka, I. Švancara, K. Vytřas, Eds., University Press Centre: Pardubice, Czech Republic, 2013/2014; pp.143-154.

DOI: 10.1002/(sici)1521-4109(199805)10:6<435::aid-elan435>3.0.co;2-j

Google Scholar

[37] N. Toshima, T. Yonezawa, Bimetallic nanoparticles Ènovel materials for chemical and physical applications, New J. Chem. (1998) 1179-1201.

DOI: 10.1039/a805753b

Google Scholar

[38] N.A. Malakhova, A.A. Mysik, S.Y. Saraeva, N.Y. Stozhko, M.A. Uimin, A.E. Ermakov, K.Z.A. Brainina, Voltammetric Sensor on the Basis of Bismuth Nanoparticles Prepared by the Method of Gas Condensation, J. Anal. Chem. 65(6) (2010) 640-647.

DOI: 10.1134/s1061934810060158

Google Scholar

[39] V.K. Shuklaa, R.S. Yadava, P. Yadavc, A.C. Pandeya, Green synthesis of nanosilver as a sensor for detection of hydrogen peroxide in water, J. Hazard. Mater. (213-214) (2012) 161-166.

Google Scholar

[40] T. Chen, C. Ge, Y. Zhang, Q. Zhao, F. Hao, N. Bao, Bimetallic platinum bismuth nanoparticles prepared with silsesquioxane for enhanced electrooxidation of formic acid, Int. J. Hydrogen Energy 40 (2015) 4548-4557.

DOI: 10.1016/j.ijhydene.2015.02.019

Google Scholar

[41] K.S. Shin, J.H. Kim, I.H. Kim, K. Kim, Poly(ethylenimine)-Stabilized Hollow Gold-Silver Bimetallic Nanoparticles: Fabrication and Catalytic Application, Bull. Korean Chem. Soc. 33(3) (2012) 906-910.

DOI: 10.5012/bkcs.2012.33.3.906

Google Scholar

[42] J. Wang, Stripping Analysis at Bismuth Electrodes: A Review, Electroanalysis 17(15-16) (2005) 1341-1346.

DOI: 10.1002/elan.200403270

Google Scholar

[43] J. Krueger, P. Winkler, E. Luderitz, M. Luek, Bismuth Alloys and Bismuth Compounds. In: Ullman Encyclopedia of Industrial Technology, Vol. 3 (Ed: M. Grayson), Wiley, New York, 1978, b) G.G. Long, L.D. Freedman, G.O. Doak, Bismuth and Bismuth Alloys, in Encyclopedia of Chemical Technology, Vol. 3 (Ed: M. Grayson), Wiley, New York, 1978, pp.912-937.

DOI: 10.1002/0471238961.0209191312151407.a01

Google Scholar

[44] A.A. Dalvi, A.K. Satpati, M.M. Palrecha, Simultaneous determination of Pt and Rh by catalytic adsorptive stripping voltammetry, using hexamethylene tetramine (HMTA) as complexing agent, Talanta 75 (2008) 1382-1387.

DOI: 10.1016/j.talanta.2008.01.053

Google Scholar