[1]
P. Christian, F. Von der Kammer, M. Baalousha, T. Hofmann, Nanoparticles: structure, properties, preparation and behaviour in environmental media, Ecotoxicology 17 (2008)326-343.
DOI: 10.1007/s10646-008-0213-1
Google Scholar
[2]
R. Handy, F. Von der Kammer, J. Lead, M. Hassellöv, R. Owen, M. Crane, The ecotoxicology and chemistry of manufactured nanoparticles, Ecotoxicology 17 (2008) 287-314.
DOI: 10.1007/s10646-008-0199-8
Google Scholar
[3]
M. Auffan, J. Rose, M.R. Wiesner, J-Y. Bottero, Chemical stability of metallic nanoparticles: A parameter controlling their potential cellular toxicity in vitro, Environ. Pollut. 157 (2009) 1127-1133.
DOI: 10.1016/j.envpol.2008.10.002
Google Scholar
[4]
S.M. Roopan, G. Rohit, G. Madhumitha, A. Rahuman, C. Kamaraj, A. Bharathi, T.V. Surendra, Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity, Ind. Crop. Prod. 43 (2013).
DOI: 10.1016/j.indcrop.2012.08.013
Google Scholar
[5]
C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and Properties of Nanocrystals of Different Shapes, Chem. Rev. 105 (2005) 1025-1102.
DOI: 10.1021/cr030063a
Google Scholar
[6]
R. Ferrando, J. Jellinek, R.L. Johnston, Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles, Chem. Rev. 108 (2008) 845-910.
DOI: 10.1021/cr040090g
Google Scholar
[7]
J.A. Rodriguez, D.W. Goodman, The Nature of the Metal-Metal Bond in Bimetallic Surfaces, Science 257 (1992) 897–903.
DOI: 10.1126/science.257.5072.897
Google Scholar
[8]
F. Tao, M.E. Grass, Y. Zhang, D.R. Butcher, J.R. Renzas, Z. Liu, J. Chung, B.S. Mun, M. Salmeron, G.A. Somorjai, Reaction-Driven Restructuring of Rh-Pd and Pt-Pd Core-Shell Nanoparticles, Science 322 (2008) 932-934.
DOI: 10.1126/science.1164170
Google Scholar
[9]
S.M. Roopan, T.V. Surendra, G. Elango, S.H.S. Kumar, Biosynthetic trends and future aspects of bimetallic nanoparticles and its medicinal applications, Appl. Microbiol. Biotechnol. (2014) DOI 10. 1007/s00253-014-5736-1.
DOI: 10.1007/s00253-014-5736-1
Google Scholar
[10]
N. Roy, A. Barik, Waste to health: Bioleaching of nanoparticles from e-waste and their medical applications, Int. J. Nanotechnol. Appl. 4 (2010) 95-101.
Google Scholar
[11]
S. Anandan, F. Grieser, M. Ashokkumar, Sonochemical synthesis of Au–Ag core–shell bimetallic nanoparticles, J. Phys. Chem. C 112 (2008) 15102-15105.
DOI: 10.1021/jp806960r
Google Scholar
[12]
Y-H. Chen, U. Nickel, Superadditive catalysis of homogeneous redox reactions with mixed silver–gold colloids, J. Chem. Soc. Faraday Trans. 89 (1993) 2479-2485.
DOI: 10.1039/ft9938902479
Google Scholar
[13]
P. Mulvaney, M. Giersig, A. Henglein, Electrochemistry of multilayer colloids: preparation and absorption spectrum of goldcoated silver particles, J. Phys. Chem. 97 (1993) 7061-7064.
DOI: 10.1021/j100129a022
Google Scholar
[14]
D. Radziuk, D. Shchukin, H. Mohwald, H. Sonochemical design of engineered gold–silver nanoparticles, J. Phys. Chem. C 112 (2008) 2462-2468.
DOI: 10.1021/jp710535r
Google Scholar
[15]
Y. Sun, Y. Xia, Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium, J. Am. Chem. Soc. 126 (2004) 3892-3901.
DOI: 10.1021/ja039734c
Google Scholar
[16]
M. Treguer, C. de Cointet, H. Remita, J. Khatouri, M. Mostafavi, J. Amblard, J. Belloni, Dose rate effects on radiolytic synthesis of gold–silver bimetallic clusters in solution, J. Phys. Chem. B 102 (1998) 4310-4321.
DOI: 10.1021/jp981467n
Google Scholar
[17]
M. Moldovani, S. Rauch, M.M. Gomez, M.A. Palacios, G. Morrison, Bioaccumulation of palladium, platinum and rhodium from urban particulates and sediments by the freshwater isopod Asellus Aquaticus, Wat. Res. 35 (2001), 4175-4183.
DOI: 10.1016/s0043-1354(01)00136-1
Google Scholar
[18]
R. Schlögl, G. Indlekofer, P. Oelhafen, Mikropartikelemissionen von Verbrennungsmotoren mit Abgasreinigung; Röntgen-Photoelektronenspektroskopie in der Umweltanalytik, Angew. Chem. 99 (1987) 312-322.
DOI: 10.1002/ange.19870990406
Google Scholar
[19]
D. Stüben, Th. Kupper, Anthropogenic emission of Pd and traffic-related PGEs-Results based on monitoring with sewage sludge, In: Palladium Emissions in the Environment: Analytical Methods, Environmental Assessment and Health Effects, F. Zereini, F. Alt, Eds. Springer-Verlag: New York, 2006, pp.325-341.
DOI: 10.1007/3-540-29220-9_21
Google Scholar
[20]
M. Cubelic, R. Pecoroni, J. Schäfer J.D. Eckhardt, Z. Berner, D. Stüben, Verteilung verkehrsbedingter Edelmetallimmissionen in Böden, Z. Umweltchem. O¬ kotox. 5 (1997) 249-258.
DOI: 10.1007/bf02937903
Google Scholar
[21]
A. Golwer, F. Zereini, Einflüsse des Straâenverkehrs auf rezente Sedimentes Langzeitunter suchungenaneinemVersickerbecken bei Frankfurt am Main, Geol. Jb Hessen 126 (1998), 47-70.
Google Scholar
[22]
V. Somerset, C. Van der Horst, B. Silwana, C. Walters, E. Iwuoha, Assessment of bioaccumulation of platinum group metals in a river system in close proximity to mining activities in South Africa, NRE, CSIR, Stellenbosch, South Africa, (2011).
Google Scholar
[23]
M.A. El Mhammedi, M. Achak, M. Bakasse, A. Chtaini, Electroanalytical method for determination of lead(II) in orange and apple using kaolin modified platinum electrode, Chemosphere 76 (2009) 1130-1134.
DOI: 10.1016/j.chemosphere.2009.04.017
Google Scholar
[24]
S. Armenta, S. Garrigues, M. de la Guardia, Green Analytical Chemistry, Trends Anal. Chem. 27 (2008) 497-511.
DOI: 10.1016/j.trac.2008.05.003
Google Scholar
[25]
J. Wang, J. Lu, S. Hocevar, P. Farias, B. Ogorevc, Bismuth-Coated Carbon Electrodes for Anodic Stripping Voltammetry, Anal. Chem. 72 (2000) 3218-3222.
DOI: 10.1021/ac000108x
Google Scholar
[26]
J. Wang, Stripping Analysis at Bismuth Electrodes: A Review, Electroanalysis 17 (2005) 1341-1346.
DOI: 10.1002/elan.200403270
Google Scholar
[27]
A. Economou, Bismuth-film electrodes: recent developments and potentialities for electroanalysis, Trends Anal. Chem. 24 (2005) 334-340.
DOI: 10.1016/j.trac.2004.11.006
Google Scholar
[28]
M. Morfobos, A. Anastasios Economou, A. Voulgaropoulos, Simultaneous determination of nickel(II) and cobalt(II) by square wave adsorptive stripping voltammetry on a rotating-disc bismuth-film electrode, Anal. Chim. Acta 519 (2004) 57-64.
DOI: 10.1016/j.aca.2004.05.022
Google Scholar
[29]
S. Legeai, S. Bois, O. Vittori, A copper bismuth film electrode for adsorptive cathodic stripping analysis of trace nickel using square wave voltammetry, J. Electroanal. Chem. 591 (2006) 93-98.
DOI: 10.1016/j.jelechem.2006.03.054
Google Scholar
[30]
E.A. Hutton, S.B. Hǒcevar, L. Mauko, B. Ogorevc, Bismuth film electrode for anodic stripping voltammetric determination of tin, Anal. Chim. Acta 580 (2006) 244-250.
DOI: 10.1016/j.aca.2006.07.075
Google Scholar
[31]
C. Prior, G. Stewart Walker, The Use of the Bismuth Film Electrode for the Anodic Stripping Voltammetric Determination of Tin, Electroanalysis 18(8) (2006) 823-829.
DOI: 10.1002/elan.200503467
Google Scholar
[32]
C. Van der Horst, B. Silwana, E. Iwuoha, V. Somerset, Stripping voltammetric determination of palladium, platinum and rhodium in South African water resources, J. Environ. Sci. Health A 47(13) (2012) 2084-(2093).
DOI: 10.1080/10934529.2012.695986
Google Scholar
[33]
B. Silwana, C. Van der Horst, E. Iwuoha, V. Somerset, Screen-printed electrodes modified with a bismuth film for stripping voltammetric analysis of platinum group metals in environmental samples, Electrochim. Acta 128 (2014) 119-127.
DOI: 10.1016/j.electacta.2013.11.045
Google Scholar
[34]
C. Van der Horst, B. Silwana, E. Iwuoha, V. Somerset, Synthesis and characterisation of bismuth-silver bimetallic nanoparticles for electrochemical sensor applications, Anal. Lett. 48 (2015a) 1-22.
DOI: 10.1080/00032719.2014.979357
Google Scholar
[35]
C. Van der Horst, B. Silwana, E. Iwuoha, V. Somerset, Bismuth-silver bimetallic nanosensor application for the voltammetric analysis of dust and soil samples, J. Electroanal. Chem. 752 (2015b) 1-11.
DOI: 10.1016/j.jelechem.2015.06.001
Google Scholar
[36]
V. Somerset, B. Silwana, C. Van der Horst, E. Iwuoha, Construction and Evaluation of a Carbon Paste Electrode Modified with Polyaniline-co-poly(dithiodianiline) for Enhanced Stripping Voltammetric Determination of Metal Ions, In: Sensing Electroanalysis, K. Kalcher, R. Metelka, I. Švancara, K. Vytřas, Eds., University Press Centre: Pardubice, Czech Republic, 2013/2014; pp.143-154.
DOI: 10.1002/(sici)1521-4109(199805)10:6<435::aid-elan435>3.0.co;2-j
Google Scholar
[37]
N. Toshima, T. Yonezawa, Bimetallic nanoparticles Ènovel materials for chemical and physical applications, New J. Chem. (1998) 1179-1201.
DOI: 10.1039/a805753b
Google Scholar
[38]
N.A. Malakhova, A.A. Mysik, S.Y. Saraeva, N.Y. Stozhko, M.A. Uimin, A.E. Ermakov, K.Z.A. Brainina, Voltammetric Sensor on the Basis of Bismuth Nanoparticles Prepared by the Method of Gas Condensation, J. Anal. Chem. 65(6) (2010) 640-647.
DOI: 10.1134/s1061934810060158
Google Scholar
[39]
V.K. Shuklaa, R.S. Yadava, P. Yadavc, A.C. Pandeya, Green synthesis of nanosilver as a sensor for detection of hydrogen peroxide in water, J. Hazard. Mater. (213-214) (2012) 161-166.
Google Scholar
[40]
T. Chen, C. Ge, Y. Zhang, Q. Zhao, F. Hao, N. Bao, Bimetallic platinum bismuth nanoparticles prepared with silsesquioxane for enhanced electrooxidation of formic acid, Int. J. Hydrogen Energy 40 (2015) 4548-4557.
DOI: 10.1016/j.ijhydene.2015.02.019
Google Scholar
[41]
K.S. Shin, J.H. Kim, I.H. Kim, K. Kim, Poly(ethylenimine)-Stabilized Hollow Gold-Silver Bimetallic Nanoparticles: Fabrication and Catalytic Application, Bull. Korean Chem. Soc. 33(3) (2012) 906-910.
DOI: 10.5012/bkcs.2012.33.3.906
Google Scholar
[42]
J. Wang, Stripping Analysis at Bismuth Electrodes: A Review, Electroanalysis 17(15-16) (2005) 1341-1346.
DOI: 10.1002/elan.200403270
Google Scholar
[43]
J. Krueger, P. Winkler, E. Luderitz, M. Luek, Bismuth Alloys and Bismuth Compounds. In: Ullman Encyclopedia of Industrial Technology, Vol. 3 (Ed: M. Grayson), Wiley, New York, 1978, b) G.G. Long, L.D. Freedman, G.O. Doak, Bismuth and Bismuth Alloys, in Encyclopedia of Chemical Technology, Vol. 3 (Ed: M. Grayson), Wiley, New York, 1978, pp.912-937.
DOI: 10.1002/0471238961.0209191312151407.a01
Google Scholar
[44]
A.A. Dalvi, A.K. Satpati, M.M. Palrecha, Simultaneous determination of Pt and Rh by catalytic adsorptive stripping voltammetry, using hexamethylene tetramine (HMTA) as complexing agent, Talanta 75 (2008) 1382-1387.
DOI: 10.1016/j.talanta.2008.01.053
Google Scholar