A Sensitive Reduced Graphene Oxide-Antimony Nanofilm Sensor for Simultaneous Determination of PGMs

Article Preview

Abstract:

Electrochemical kinetics of Platinum Group Metals was studied by cyclic voltammetry and the concentration of these metal ions was successfully detected by adsorptive differential pulse cathodic stripping voltammetry using a GCE/rGO-SbNPs sensor. The sensor constructed in this work consisted of a reduced graphene oxide film that was impregnated with antimony nanoparticles. The constructed nanosensor provided an excellent platform for the simultaneous determination of Pd (II), Pt (II) and Rh (III) metal ions. The analytical curve was linear in the concentration range from 0 - 0.40 ng L-1, and 0 - 0.56 ng L-1 for Pd (II)-Rh (III) and Pt (II)-Rh (III), respectively. The detection limits of Pd (II) and Rh (III) were found to be 0.46 ng L-1and 0.55 ng L-1, respectively while for Pt (II) and Rh (III) it was 0.52 ng L-1and 0.48 ng L-1, respectively. The relative standard deviation from 5 measurements for 0.4 ng L-1 Pd (II)-Rh (III) and Pt (II)-Rh (III) by using the GCE/rGO-SbNPs sensor was found to be 6.21% and 3.96%, respectively. Interferences by other metal ions were also studied.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

134-141

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Franek, L. DeRose, Student Manual, Principles and Practices of Air Pollution Control, US Environmental Protection Agency, Research Triangle Park, NC, (2003).

Google Scholar

[2] S. Yunus-Harwin, A. Kurniawan, D. Adityawarman, A. Indarto, Nanotechnologies in water and air pollution treatment, Environ. Sci. Technol. 1 (2012) 136-148.

DOI: 10.1080/21622515.2012.733966

Google Scholar

[3] P. Bhawana, M.H. Fulekar, Nanotechnology: Remediation Technologies to clean up the Environmental pollutants, Res. J. Chem. Sci. 2 (2012) 90-96.

Google Scholar

[4] Y. Wei, C. Gao, F.L. Meng, H.H. Li, L. Wang, J. H Liu, X.J. Huang, SnO2/Reduced Graphene Oxide Nanocomposite for the Simultaneous Electrochemical Detection of Cadmium(II), Lead(II), Copper(II), and Mercury(II): An Interesting Favorable Mutual Interference, J. Phys. Chem. C 116 (2012).

DOI: 10.1021/jp209805c

Google Scholar

[5] A. Vaseashta, M. Vaclavikovac, S. Vaseashtaa, G. Galliosd, P. Royb, O. Pummakarnchana, Nanostructures in environmental pollution detection, monitoring, and remediation, Sci. Technol. Adv. Mater. 8 (2007) 47-59.

Google Scholar

[6] Z.E. Gagnon, C. Newkirk, S. Hicks, Impact of platinum group metals on the environment: a toxicological, genotoxic and analytical chemistry study, J Environ Sci Health A Tox Hazard Subst Environ Eng. 41 (2006) 397-414.

DOI: 10.1080/10934520500423592

Google Scholar

[7] H. Karimi-Maleh, M. Moazampour, H. Ahmar, H. Beitollahi, A.A. Ensafi, A sensitive nanocomposite-based electrochemical sensor for voltammetric simultaneous determination of isoproterenol, acetaminophen and tryptophan. Measurement 51 (2014) 91–99.

DOI: 10.1016/j.measurement.2014.01.028

Google Scholar

[8] V.K. Gupta, R. Jain, K. Radhapyari, N. Jadon, Voltammetric techniques for the assay of pharmaceuticals - a review, Anal. Biochem. 40 (2011) 179-196.

DOI: 10.1016/j.ab.2010.09.027

Google Scholar

[9] C.B. Jacobs, M.J. Peairs, B.J. Venton, Review: Carbon nanotube based electrochemical sensors for biomolecules, Anal. Chim. Acta 662 (2010) 105-127.

DOI: 10.1016/j.aca.2010.01.009

Google Scholar

[10] G. Aragay, A. Merkoçi, Nanomaterials application in electrochemical detection of heavy metals, Electrochim. Acta 84 (2012) 49–61.

DOI: 10.1016/j.electacta.2012.04.044

Google Scholar

[11] B. Silwana, C. Van der Horst, E. Iwuoha, V. Somerset, Screen-printed carbon electrodes modified with a bismuth film for stripping voltammetric analysis of platinum group metals in environmental samples, Electrochim. Acta 128 (2014) 119–127.

DOI: 10.1016/j.electacta.2013.11.045

Google Scholar

[12] C. Van der Horst, B. Silwana, E. Iwuoha, V. Somerset, Stripping voltammetric determination of palladium, platinum and rhodium in freshwater and sediment samples from South African water resources, J. Environ. Sci. Health A47 (2012) 2084–(2093).

DOI: 10.1080/10934529.2012.695986

Google Scholar

[13] C. Van der Horst, B. Silwana, E. Iwuoha, V. Somerset, Bismuth–silver bimetallic nanosensor application for the voltammetric analysis of dust and soil samples, J. Electroanal. Chem. 752 (2015) 1–11.

DOI: 10.1016/j.jelechem.2015.06.001

Google Scholar

[14] O. Lopez-Acevedo, K.A. Kacprzak, J. Akola, H. Hakkinen, Quantum size effects in ambient CO oxidation catalysed by ligand-protected gold clusters, Nat. Chem. 2 (2010) 329-334.

DOI: 10.1038/nchem.589

Google Scholar

[15] W.E. Kaden, T. Wu, W.A. Kunkel, S.L. Anderson, Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces, Science 326 (2009) 826-829.

DOI: 10.1126/science.1180297

Google Scholar

[16] A.A. Herzing, C.J. Kiely, A.F. Carley, P. Landon, G.J. Hutchings, Identification Of Active Gold Nanoclusters On Iron Oxide Supports For CO Oxidation, Science, 321 (2008) 1331-1335.

DOI: 10.1126/science.1159639

Google Scholar

[17] S. Daniel, J.M. Gladis, T.P. Rao, Synthesis of imprinted polymer material with palladium ion nanopores and its analytical application, Anal. Chim. Acta 488 (2003) 173–182.

DOI: 10.1016/s0003-2670(03)00661-5

Google Scholar

[18] V.S. Somerset, M.J. Klink, M.M.C. Sekota, P.G.L. Baker, E.I. Iwuoha, Polyaniline-Mercaptobenzothiazole Biosensor for Organophosphate and Carbamate Pesticides, Anal. Lett. 39 (2006) 1683-1698.

DOI: 10.1080/00032710600713834

Google Scholar

[19] P.T. Kissinger, W.R. Heineman, Laboratory techniques in electroanalytical chemistry. Marcel Dekker, Inc; New York, USA, (1996).

Google Scholar

[20] P. Zanello, Inorganic Electrochemistry: Theory, Practice and Application. Cambridge, UK, (2003).

Google Scholar

[21] I.I. Naqvi, M.Z. Kirmani, R. Parveen, M. Nazir, M. Ashfaq, Evaluation of Kinetic and Thermodynamic Parameters of 1, 1'-Dibenzoylferrocene in Methanol by Cyclic Voltammetry, Pak. J. Chem. 2 (2012) 183-190.

DOI: 10.15228/2012.v02.i04.p05

Google Scholar

[22] A.S.A. Khan, R. Ahmed, M.L. Mirza, Kinetics and Electrochemical Studies of Uranium in Perchlorate and Sulfate Media by Cyclic Voltammetry, J. Chem. Soc. Pak. 2 (2012) 183-190.

Google Scholar

[23] M. Nazir, I.I. Naqvi, Synthesis, Spectral and Electrochemical Studies of Complex of Uranium (IV) with Pyridine-3-Carboxylic Acid, Amer. J. Anal. Chem. 4 (2013) 134-140.

DOI: 10.4236/ajac.2013.43018

Google Scholar

[24] M.S.S. Julião, E.C. Almeida, M.A.L. Scalea, N.G. Ferreira, R.G. Compton, S.H.P. Serrano, Voltammetric Behavior of Nitrofurazone at Highly Boron Doped Diamond Electrode, Electroanal. 18 (2005) 269-278.

DOI: 10.1002/elan.200403093

Google Scholar

[25] C. Locatelli, Simultaneous square wave stripping voltammetric determination of platinum group metals (PGMs) and lead at trace and ultratrace concentration level Application to surface water, Anal. Chim. Acta 557 (2006) 70-77.

DOI: 10.1016/j.aca.2005.10.004

Google Scholar

[26] M. Paraskevas, F. Tsopelas, M. Ochsenkühn-Petropoulou, Determination of Pt and Pd in particles emitted from automobile exhaust catalysts using ion-exchange matrix separation and voltammetric detection, Microchim. Acta 176 (2012) 235–242.

DOI: 10.1007/s00604-011-0724-y

Google Scholar

[27] A.A. Dalvi, A.K. Satpati, M.M. Palrecha, Simultaneous determination of Pt and Rh by catalytic adsorptive stripping voltammetry, using hexamethylene tetramine (HMTA) as complexing agent, Talanta 75 (2008) 1382-1387.

DOI: 10.1016/j.talanta.2008.01.053

Google Scholar

[28] S. Huszal, J. Kowalska, M. Krzeminska, J. Golimowski, (2005). Determination of platinum with thiosemicarbazide by catalytic adsorptive stripping voltammetry. Electroanal. 17 (2005) 299-304.

DOI: 10.1002/elan.200403095

Google Scholar

[29] B. Ogorevc, X. Cai, I. Grabec, Determination of traces of copper by anodic stripping voltammetry after its preconcentration via an ion-exchange route at carbon paste electrodes modified with vermiculite, Anal. Chim. Acta 305 (1995) 176-182.

DOI: 10.1016/0003-2670(94)00504-f

Google Scholar

[30] I. Švancara, K. Kalcher, W. Diewald, K. Vytřas, Voltammetric determination of silver at ultratrace levels using a carbon paste electrode with improved surface characteristics, Electroanal. 8 (1996) 336-342.

DOI: 10.1002/elan.1140080407

Google Scholar