Sensory Properties of Polysulfone Hydrogel for Electro-Analytical Profiling of Vanadium and Selenium in Aqueous Solutions

Article Preview

Abstract:

Hydrogels have been a topic of extensive research because of their unique bulk and surface properties. They play a vital role in development of controlled release drug delivery systems. Polysulfone hydrogels are hydrophilic porous materials, which provide the advantage of biocompatibility and effective orientation of biomolecule in the design of the novel biosensors [1-2]. Polysulfone hydrogels may be prepared as water swellable powders or drop cast as thin films on screen printed carbon electrodes (SPCE). Polysulfone hydrogels produce electroactive thin films, characterized by 2 well resolved redox peaks, with a formal potential of 0.0867 V and diffusion coefficient in aqueous medium of 9.06e-9 Cm2/s. In this paper we report on the initial speciation studies and analytical performance of Selenium and Vanadium at the hydrogel electrodes, as evaluated by using cyclic voltammetry in a range of -0.7 V to +0.0 V versus Ag/AgCl. The morphology, adsorption and thin film integrity was evaluated using High resolution scanning electron microscopy (HR-SEM), UV-Vis and Raman spectroscopy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

142-157

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Muya, F.N., L. Phelane, P. Baker, and E. Iwouha, Synthesis and characterization of polysulfone Hydrogels. Journal of Surface Engineered Materials and Advanced Technology., 2014(4): pp.227-236.

DOI: 10.4236/jsemat.2014.44025

Google Scholar

[2] Phelane, L., F.N. Muya, H.L. Richards, P.G.L. Baker*, and E.I. Iwuoha, Polysulfone Nanocomposite Membranes with improvedhydrophilicity. Journal of Electrochimica Acta 2014. 128 pp.326-335.

DOI: 10.1016/j.electacta.2013.11.156

Google Scholar

[3] Lim, S. -R. and J.M. Schoenung, Human health and ecological toxicity potentials due to heavy metal content in waste electronic devices with flat panel displays. Journal of Hazardous Materials, 2010. 177(1–3): pp.251-259.

DOI: 10.1016/j.jhazmat.2009.12.025

Google Scholar

[4] Facchini, D.M., V.G. Yuen, M.L. Battell, J.H. McNeill, and M.D. Grynpas, The effects of Vanadium treatment on bone in diabetic and non-diabetic rats. Bone, 2006. 38(3): pp.368-377.

DOI: 10.1016/j.bone.2005.08.015

Google Scholar

[5] Goldwaser, I., D. Gefel, E. Gershonov, M. Fridkin, and Y. Shechter, Insulin-like effects of Vanadium: basic and clinical implications. Journal of Inorganic Biochemistry, 2000. 80(1–2): pp.21-25.

DOI: 10.1016/s0162-0134(00)00035-0

Google Scholar

[6] Li, H., D. Zhou, Q. Zhang, C. Feng, W. Zheng, K. He, and Y. Lan, Vanadium exposure-induced neurobehavioral alterations among Chinese workers. NeuroToxicology, 2013. 36(0): pp.49-54.

DOI: 10.1016/j.neuro.2013.02.008

Google Scholar

[7] Willsky, G.R., A.B. Goldfine, P.J. Kostyniak, J.H. McNeill, L.Q. Yang, H.R. Khan, and D.C. Crans, Effect of Vanadium(IV) compounds in the treatment of diabetes: in vivo and in vitro studies with vanadyl sulfate and bis(maltolato)oxovandium(IV). Journal of Inorganic Biochemistry, 2001. 85(1): pp.33-42.

DOI: 10.1016/s0162-0134(00)00226-9

Google Scholar

[8] Kolachi, N.F., T.G. Kazi, S.K. Wadhwa, H.I. Afridi, J.A. Baig, S. Khan, and F. Shah, Evaluation of Selenium in biological sample of arsenic exposed female skin lesions and skin cancer patients with related to non-exposed skin cancer patients. Science of The Total Environment, 2011. 409(17): pp.3092-3097.

DOI: 10.1016/j.scitotenv.2011.05.008

Google Scholar

[9] Skröder, H.M., J.D. Hamadani, F. Tofail, L.Å. Persson, M.E. Vahter, and M.J. Kippler, Selenium status in pregnancy influences children's cognitive function at 1. 5 years of age. Clinical Nutrition, (0).

DOI: 10.1016/j.clnu.2014.09.020

Google Scholar

[10] Tara, F., G. Maamouri, M.P. Rayman, M. Ghayour-Mobarhan, A. Sahebkar, O. Yazarlu, S. Ouladan, S. Tavallaie, M. Azimi-Nezhad, M.T. Shakeri, H. Boskabadi, M. Oladi, M.T. Sangani, B.S. Razavi, and G. Ferns, Selenium Supplementation and the Incidence of Preeclampsia in Pregnant Iranian Women: A Randomized, Double-Blind, Placebo-Controlled Pilot Trial. Taiwanese Journal of Obstetrics and Gynecology, 2010. 49(2): pp.181-187.

DOI: 10.1016/s1028-4559(10)60038-1

Google Scholar

[11] Vanderlelie, J. and A.V.A. Perkins, Selenium and preeclampsia: A global perspective. Pregnancy Hypertension: An International Journal of Women's Cardiovascular Health, 2011. 1(3–4): pp.213-224.

DOI: 10.1016/j.preghy.2011.07.001

Google Scholar

[12] Wang, X., K. Sun, Y. Tan, S. Wu, and J. Zhang, Efficacy and safety of Selenium nanoparticles administered intraperitoneally for the prevention of growth of cancer cells in the peritoneal cavity. Free Radical Biology and Medicine, 2014. 72(0): pp.1-10.

DOI: 10.1016/j.freeradbiomed.2014.04.003

Google Scholar

[13] Bishayee, A., A. Waghray, M.A. Patel, and M. Chatterjee, Vanadium in the detection, prevention and treatment of cancer: The in vivo evidence. Cancer Letters, 2010. 294(1): pp.1-12.

DOI: 10.1016/j.canlet.2010.01.030

Google Scholar

[14] Domingo, J.L., Vanadium: A review of the reproductive and developmental toxicity. Reproductive Toxicology, 1996. 10(3): pp.175-182.

DOI: 10.1016/0890-6238(96)00019-6

Google Scholar

[15] Chen, B. -Y., V.P. Utgikar, S.M. Harmon, H.H. Tabak, D.F. Bishop, and R. Govind, Studies on biosorption of zinc(II) and copper(II) on Desulfovibrio desulfuricans. International Biodeterioration & Biodegradation, 2000. 46(1): pp.11-18.

DOI: 10.1016/s0964-8305(00)00054-8

Google Scholar

[16] Chen, X., W. Chen, A. Mulchandani, and U. Mohideen, Application of displacement principle for detecting heavy metal ions and EDTA using microcantilevers. Sensors and Actuators B: Chemical, 2012. 161(1): pp.203-208.

DOI: 10.1016/j.snb.2011.10.020

Google Scholar

[17] Cheng, Y., X. Sun, X. Liao, and B. Shi, Adsorptive Recovery of Uranium from Nuclear Fuel Industrial Wastewater by Titanium Loaded Collagen Fiber. Chinese Journal of Chemical Engineering, 2011. 19(4): pp.592-597.

DOI: 10.1016/s1004-9541(11)60027-x

Google Scholar

[18] Feng, D., C. Aldrich, and H. Tan, Removal of heavy metal ions by carrier magnetic separation of adsorptive particulates. Hydrometallurgy, 2000. 56(3): pp.359-368.

DOI: 10.1016/s0304-386x(00)00085-2

Google Scholar

[19] Kang, Y., J.W. Kampf, and M.E. Meyerhoff, Optical fluoride sensor based on monomer–dimer equilibrium of scandium(III)-octaethylporphyrin in a plasticized polymeric film. Analytica Chimica Acta, 2007. 598(2): pp.295-303.

DOI: 10.1016/j.aca.2007.07.048

Google Scholar

[20] Kumar, R., D. Bhatia, R. Singh, and N.R. Bishnoi, Metal tolerance and sequestration of Ni(II), Zn(II) and Cr(VI) ions from simulated and electroplating wastewater in batch process: Kinetics and equilibrium study. International Biodeterioration & Biodegradation, 2012. 66(1): pp.82-90.

DOI: 10.1016/j.ibiod.2011.11.006

Google Scholar

[21] Smith, S.R., A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environment International, 2009. 35(1): pp.142-156.

DOI: 10.1016/j.envint.2008.06.009

Google Scholar

[22] Pourbeyram, S. and S. Mohammadi, Synthesis and characterization of highly stable and water dispersible hydrogel–copper nanocomposite. Journal of Non-Crystalline Solids, 2014. 402(0): pp.58-63.

DOI: 10.1016/j.jnoncrysol.2014.05.020

Google Scholar

[23] Liu, C., Y. Tan, K. Xu, Y. Li, C. Lu, and P. Wang, Synthesis of poly(2-(2-methoxyethoxy)ethyl methacrylate) hydrogel using starch-based nanosphere cross-linkers. Carbohydrate Polymers, 2014. 105(0): pp.270-275.

DOI: 10.1016/j.carbpol.2014.01.078

Google Scholar

[24] Holback, H., Y. Yeo, and K. Park, 1 - Hydrogel swelling behavior and its biomedical applications, in Biomedical Hydrogels, S. Rimmer, Editor. 2011, Woodhead Publishing. pp.3-24.

DOI: 10.1533/9780857091383.1.3

Google Scholar

[25] Buenger, D., F. Topuz, and J. Groll, Hydrogels in sensing applications. Progress in Polymer Science, 2012. 37(12): pp.1678-1719.

DOI: 10.1016/j.progpolymsci.2012.09.001

Google Scholar

[26] Abeer, M.M., M.C.I.M. Amin, A.M. Lazim, M. Pandey, and C. Martin, Synthesis of a novel acrylated abietic acid-g-bacterial cellulose hydrogel by gamma irradiation. Carbohydrate Polymers, 2014. 110(0): pp.505-512.

DOI: 10.1016/j.carbpol.2014.04.052

Google Scholar

[27] Bédouet, L., F. Pascale, L. Moine, M. Wassef, S.H. Ghegediban, V. -N. Nguyen, M. Bonneau, D. Labarre, and A. Laurent, Intra-articular fate of degradable poly(ethyleneglycol)-hydrogel microspheres as carriers for sustained drug delivery. International Journal of Pharmaceutics, 2013. 456(2): pp.536-544.

DOI: 10.1016/j.ijpharm.2013.08.016

Google Scholar

[28] Chen, J.J., A.L. Ahmad, and B.S. Ooi, Poly(N-isopropylacrylamide-co-acrylic acid) hydrogels for copper ion adsorption: Equilibrium isotherms, kinetic and thermodynamic studies. Journal of Environmental Chemical Engineering, 2013. 1(3): pp.339-348.

DOI: 10.1016/j.jece.2013.05.012

Google Scholar

[29] Tou, Z.Q., T.W. Koh, and C.C. Chan, Poly(vinyl alcohol) hydrogel based fiber interferometer sensor for heavy metal cations. Sensors and Actuators B: Chemical, 2014. 202(0): pp.185-193.

DOI: 10.1016/j.snb.2014.05.006

Google Scholar

[30] Tripp, R.A., R.A. Dluhy, and Y. Zhao, Novel nanostructures for SERS biosensing. Nano Today, 2008. 3(3–4): pp.31-37.

DOI: 10.1016/s1748-0132(08)70042-2

Google Scholar

[31] Li, D. -W., W. -L. Zhai, Y. -T. Li, and Y. -T. Long, Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Microchimica Acta, 2014. 181(1-2): pp.23-43.

DOI: 10.1007/s00604-013-1115-3

Google Scholar

[32] Zhang, D., R. Haputhanthri, S. Ansar, K. Vangala, H. De Silva, A. Sygula, S. Saebo, and C. Pittman, Jr., Ultrasensitive detection of malondialdehyde with surface-enhanced Raman spectroscopy. Analytical and Bioanalytical Chemistry, 2010. 398(7-8): pp.3193-3201.

DOI: 10.1007/s00216-010-4225-3

Google Scholar

[33] Chan, H. -Y., V. -H. Nguyen, J. Wu, V. Calvino-Casilda, M. Bañares, and H. Bai, Real-Time Raman Monitoring during Photocatalytic Epoxidation of Cyclohexene over V-Ti/MCM-41 Catalysts. Catalysts, 2015. 5(2): pp.518-533.

DOI: 10.3390/catal5020518

Google Scholar

[34] Freitas, D.V., J.M.M. Dias, S.G.B. Passos, G.C.S. de Souza, E.T. Neto, and M. Navarro, Electrochemical synthesis of TGA-capped CdTe and CdSe quantum dots. Green Chemistry, 2014. 16(6): p.3247.

DOI: 10.1039/c4gc00300d

Google Scholar

[35] Lemly, A.D., Teratogenic effects and monetary cost of Selenium poisoning of fish in Lake Sutton, North Carolina. Ecotoxicology and Environmental Safety, 2014. 104(0): pp.160-167.

DOI: 10.1016/j.ecoenv.2014.02.022

Google Scholar

[36] Crosslinked poly(vinyl alcohol)/carboxymethyl chitosan hydrogels for removal of metal ions and dyestuff from aqueous solutions. Journal of Applied Polymer Science, 2011: p. n/a.

DOI: 10.1002/app.35072

Google Scholar

[37] A promising absorbent of acrylic acid/poly(ethylene glycol) hydrogel prepared by glow-discharge electrolysis plasma. Central European Journal of Chemistry, 2012. 10(4): p.1349.

DOI: 10.2478/s11532-012-0055-9

Google Scholar

[38] Poly (Acrylate -acrylic Acid-Co-Maleic Acid) Hydrogel – A Cost Effective and Efficient Method for Removal of Metal Ions From Water. Separation Science and Technology, 2013: p.130825095427009.

DOI: 10.1080/01496395.2013.809106

Google Scholar

[39] Al-qudah, Y.H.F., G.A. Mahmoud, and M.A. Abdel Khalek, Radiation crosslinked poly (vinyl alcohol)/acrylic acid copolymer for removal of heavy metal ions from aqueous solutions. Journal of Radiation Research and Applied Sciences, 2014. 7(2): pp.135-145.

DOI: 10.1016/j.jrras.2013.12.008

Google Scholar

[40] Chatterjee, S., T. Chatterjee, and S.H. Woo, A new type of chitosan hydrogel sorbent generated by anionic surfactant gelation. Bioresource Technology, 2010. 101(11): pp.3853-3858.

DOI: 10.1016/j.biortech.2009.12.089

Google Scholar

[41] pH-responsive carboxymethylcellulose-g-poly(sodium acrylate)/polyvinylpyrrolidone semi-IPN hydrogels with enhanced responsive and swelling properties. Macromolecular Research, 2011. 19(1): p.57.

DOI: 10.1007/s13233-011-0112-9

Google Scholar

[42] Alexander, J., Chapter 52 - Selenium, in Handbook on the Toxicology of Metals (Fourth Edition), G.F.N.A.F. Nordberg, Editor. 2015, Academic Press: San Diego. pp.1175-1208.

Google Scholar

[43] Kowalik, R., Microgravimetric studeis of Selenium electrodeposition onto different substrates. Archives of metallurgy and materials 2014. 59(3): pp.872-877.

DOI: 10.2478/amm-2014-0147

Google Scholar