[1]
Muya, F.N., L. Phelane, P. Baker, and E. Iwouha, Synthesis and characterization of polysulfone Hydrogels. Journal of Surface Engineered Materials and Advanced Technology., 2014(4): pp.227-236.
DOI: 10.4236/jsemat.2014.44025
Google Scholar
[2]
Phelane, L., F.N. Muya, H.L. Richards, P.G.L. Baker*, and E.I. Iwuoha, Polysulfone Nanocomposite Membranes with improvedhydrophilicity. Journal of Electrochimica Acta 2014. 128 pp.326-335.
DOI: 10.1016/j.electacta.2013.11.156
Google Scholar
[3]
Lim, S. -R. and J.M. Schoenung, Human health and ecological toxicity potentials due to heavy metal content in waste electronic devices with flat panel displays. Journal of Hazardous Materials, 2010. 177(1–3): pp.251-259.
DOI: 10.1016/j.jhazmat.2009.12.025
Google Scholar
[4]
Facchini, D.M., V.G. Yuen, M.L. Battell, J.H. McNeill, and M.D. Grynpas, The effects of Vanadium treatment on bone in diabetic and non-diabetic rats. Bone, 2006. 38(3): pp.368-377.
DOI: 10.1016/j.bone.2005.08.015
Google Scholar
[5]
Goldwaser, I., D. Gefel, E. Gershonov, M. Fridkin, and Y. Shechter, Insulin-like effects of Vanadium: basic and clinical implications. Journal of Inorganic Biochemistry, 2000. 80(1–2): pp.21-25.
DOI: 10.1016/s0162-0134(00)00035-0
Google Scholar
[6]
Li, H., D. Zhou, Q. Zhang, C. Feng, W. Zheng, K. He, and Y. Lan, Vanadium exposure-induced neurobehavioral alterations among Chinese workers. NeuroToxicology, 2013. 36(0): pp.49-54.
DOI: 10.1016/j.neuro.2013.02.008
Google Scholar
[7]
Willsky, G.R., A.B. Goldfine, P.J. Kostyniak, J.H. McNeill, L.Q. Yang, H.R. Khan, and D.C. Crans, Effect of Vanadium(IV) compounds in the treatment of diabetes: in vivo and in vitro studies with vanadyl sulfate and bis(maltolato)oxovandium(IV). Journal of Inorganic Biochemistry, 2001. 85(1): pp.33-42.
DOI: 10.1016/s0162-0134(00)00226-9
Google Scholar
[8]
Kolachi, N.F., T.G. Kazi, S.K. Wadhwa, H.I. Afridi, J.A. Baig, S. Khan, and F. Shah, Evaluation of Selenium in biological sample of arsenic exposed female skin lesions and skin cancer patients with related to non-exposed skin cancer patients. Science of The Total Environment, 2011. 409(17): pp.3092-3097.
DOI: 10.1016/j.scitotenv.2011.05.008
Google Scholar
[9]
Skröder, H.M., J.D. Hamadani, F. Tofail, L.Å. Persson, M.E. Vahter, and M.J. Kippler, Selenium status in pregnancy influences children's cognitive function at 1. 5 years of age. Clinical Nutrition, (0).
DOI: 10.1016/j.clnu.2014.09.020
Google Scholar
[10]
Tara, F., G. Maamouri, M.P. Rayman, M. Ghayour-Mobarhan, A. Sahebkar, O. Yazarlu, S. Ouladan, S. Tavallaie, M. Azimi-Nezhad, M.T. Shakeri, H. Boskabadi, M. Oladi, M.T. Sangani, B.S. Razavi, and G. Ferns, Selenium Supplementation and the Incidence of Preeclampsia in Pregnant Iranian Women: A Randomized, Double-Blind, Placebo-Controlled Pilot Trial. Taiwanese Journal of Obstetrics and Gynecology, 2010. 49(2): pp.181-187.
DOI: 10.1016/s1028-4559(10)60038-1
Google Scholar
[11]
Vanderlelie, J. and A.V.A. Perkins, Selenium and preeclampsia: A global perspective. Pregnancy Hypertension: An International Journal of Women's Cardiovascular Health, 2011. 1(3–4): pp.213-224.
DOI: 10.1016/j.preghy.2011.07.001
Google Scholar
[12]
Wang, X., K. Sun, Y. Tan, S. Wu, and J. Zhang, Efficacy and safety of Selenium nanoparticles administered intraperitoneally for the prevention of growth of cancer cells in the peritoneal cavity. Free Radical Biology and Medicine, 2014. 72(0): pp.1-10.
DOI: 10.1016/j.freeradbiomed.2014.04.003
Google Scholar
[13]
Bishayee, A., A. Waghray, M.A. Patel, and M. Chatterjee, Vanadium in the detection, prevention and treatment of cancer: The in vivo evidence. Cancer Letters, 2010. 294(1): pp.1-12.
DOI: 10.1016/j.canlet.2010.01.030
Google Scholar
[14]
Domingo, J.L., Vanadium: A review of the reproductive and developmental toxicity. Reproductive Toxicology, 1996. 10(3): pp.175-182.
DOI: 10.1016/0890-6238(96)00019-6
Google Scholar
[15]
Chen, B. -Y., V.P. Utgikar, S.M. Harmon, H.H. Tabak, D.F. Bishop, and R. Govind, Studies on biosorption of zinc(II) and copper(II) on Desulfovibrio desulfuricans. International Biodeterioration & Biodegradation, 2000. 46(1): pp.11-18.
DOI: 10.1016/s0964-8305(00)00054-8
Google Scholar
[16]
Chen, X., W. Chen, A. Mulchandani, and U. Mohideen, Application of displacement principle for detecting heavy metal ions and EDTA using microcantilevers. Sensors and Actuators B: Chemical, 2012. 161(1): pp.203-208.
DOI: 10.1016/j.snb.2011.10.020
Google Scholar
[17]
Cheng, Y., X. Sun, X. Liao, and B. Shi, Adsorptive Recovery of Uranium from Nuclear Fuel Industrial Wastewater by Titanium Loaded Collagen Fiber. Chinese Journal of Chemical Engineering, 2011. 19(4): pp.592-597.
DOI: 10.1016/s1004-9541(11)60027-x
Google Scholar
[18]
Feng, D., C. Aldrich, and H. Tan, Removal of heavy metal ions by carrier magnetic separation of adsorptive particulates. Hydrometallurgy, 2000. 56(3): pp.359-368.
DOI: 10.1016/s0304-386x(00)00085-2
Google Scholar
[19]
Kang, Y., J.W. Kampf, and M.E. Meyerhoff, Optical fluoride sensor based on monomer–dimer equilibrium of scandium(III)-octaethylporphyrin in a plasticized polymeric film. Analytica Chimica Acta, 2007. 598(2): pp.295-303.
DOI: 10.1016/j.aca.2007.07.048
Google Scholar
[20]
Kumar, R., D. Bhatia, R. Singh, and N.R. Bishnoi, Metal tolerance and sequestration of Ni(II), Zn(II) and Cr(VI) ions from simulated and electroplating wastewater in batch process: Kinetics and equilibrium study. International Biodeterioration & Biodegradation, 2012. 66(1): pp.82-90.
DOI: 10.1016/j.ibiod.2011.11.006
Google Scholar
[21]
Smith, S.R., A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environment International, 2009. 35(1): pp.142-156.
DOI: 10.1016/j.envint.2008.06.009
Google Scholar
[22]
Pourbeyram, S. and S. Mohammadi, Synthesis and characterization of highly stable and water dispersible hydrogel–copper nanocomposite. Journal of Non-Crystalline Solids, 2014. 402(0): pp.58-63.
DOI: 10.1016/j.jnoncrysol.2014.05.020
Google Scholar
[23]
Liu, C., Y. Tan, K. Xu, Y. Li, C. Lu, and P. Wang, Synthesis of poly(2-(2-methoxyethoxy)ethyl methacrylate) hydrogel using starch-based nanosphere cross-linkers. Carbohydrate Polymers, 2014. 105(0): pp.270-275.
DOI: 10.1016/j.carbpol.2014.01.078
Google Scholar
[24]
Holback, H., Y. Yeo, and K. Park, 1 - Hydrogel swelling behavior and its biomedical applications, in Biomedical Hydrogels, S. Rimmer, Editor. 2011, Woodhead Publishing. pp.3-24.
DOI: 10.1533/9780857091383.1.3
Google Scholar
[25]
Buenger, D., F. Topuz, and J. Groll, Hydrogels in sensing applications. Progress in Polymer Science, 2012. 37(12): pp.1678-1719.
DOI: 10.1016/j.progpolymsci.2012.09.001
Google Scholar
[26]
Abeer, M.M., M.C.I.M. Amin, A.M. Lazim, M. Pandey, and C. Martin, Synthesis of a novel acrylated abietic acid-g-bacterial cellulose hydrogel by gamma irradiation. Carbohydrate Polymers, 2014. 110(0): pp.505-512.
DOI: 10.1016/j.carbpol.2014.04.052
Google Scholar
[27]
Bédouet, L., F. Pascale, L. Moine, M. Wassef, S.H. Ghegediban, V. -N. Nguyen, M. Bonneau, D. Labarre, and A. Laurent, Intra-articular fate of degradable poly(ethyleneglycol)-hydrogel microspheres as carriers for sustained drug delivery. International Journal of Pharmaceutics, 2013. 456(2): pp.536-544.
DOI: 10.1016/j.ijpharm.2013.08.016
Google Scholar
[28]
Chen, J.J., A.L. Ahmad, and B.S. Ooi, Poly(N-isopropylacrylamide-co-acrylic acid) hydrogels for copper ion adsorption: Equilibrium isotherms, kinetic and thermodynamic studies. Journal of Environmental Chemical Engineering, 2013. 1(3): pp.339-348.
DOI: 10.1016/j.jece.2013.05.012
Google Scholar
[29]
Tou, Z.Q., T.W. Koh, and C.C. Chan, Poly(vinyl alcohol) hydrogel based fiber interferometer sensor for heavy metal cations. Sensors and Actuators B: Chemical, 2014. 202(0): pp.185-193.
DOI: 10.1016/j.snb.2014.05.006
Google Scholar
[30]
Tripp, R.A., R.A. Dluhy, and Y. Zhao, Novel nanostructures for SERS biosensing. Nano Today, 2008. 3(3–4): pp.31-37.
DOI: 10.1016/s1748-0132(08)70042-2
Google Scholar
[31]
Li, D. -W., W. -L. Zhai, Y. -T. Li, and Y. -T. Long, Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Microchimica Acta, 2014. 181(1-2): pp.23-43.
DOI: 10.1007/s00604-013-1115-3
Google Scholar
[32]
Zhang, D., R. Haputhanthri, S. Ansar, K. Vangala, H. De Silva, A. Sygula, S. Saebo, and C. Pittman, Jr., Ultrasensitive detection of malondialdehyde with surface-enhanced Raman spectroscopy. Analytical and Bioanalytical Chemistry, 2010. 398(7-8): pp.3193-3201.
DOI: 10.1007/s00216-010-4225-3
Google Scholar
[33]
Chan, H. -Y., V. -H. Nguyen, J. Wu, V. Calvino-Casilda, M. Bañares, and H. Bai, Real-Time Raman Monitoring during Photocatalytic Epoxidation of Cyclohexene over V-Ti/MCM-41 Catalysts. Catalysts, 2015. 5(2): pp.518-533.
DOI: 10.3390/catal5020518
Google Scholar
[34]
Freitas, D.V., J.M.M. Dias, S.G.B. Passos, G.C.S. de Souza, E.T. Neto, and M. Navarro, Electrochemical synthesis of TGA-capped CdTe and CdSe quantum dots. Green Chemistry, 2014. 16(6): p.3247.
DOI: 10.1039/c4gc00300d
Google Scholar
[35]
Lemly, A.D., Teratogenic effects and monetary cost of Selenium poisoning of fish in Lake Sutton, North Carolina. Ecotoxicology and Environmental Safety, 2014. 104(0): pp.160-167.
DOI: 10.1016/j.ecoenv.2014.02.022
Google Scholar
[36]
Crosslinked poly(vinyl alcohol)/carboxymethyl chitosan hydrogels for removal of metal ions and dyestuff from aqueous solutions. Journal of Applied Polymer Science, 2011: p. n/a.
DOI: 10.1002/app.35072
Google Scholar
[37]
A promising absorbent of acrylic acid/poly(ethylene glycol) hydrogel prepared by glow-discharge electrolysis plasma. Central European Journal of Chemistry, 2012. 10(4): p.1349.
DOI: 10.2478/s11532-012-0055-9
Google Scholar
[38]
Poly (Acrylate -acrylic Acid-Co-Maleic Acid) Hydrogel – A Cost Effective and Efficient Method for Removal of Metal Ions From Water. Separation Science and Technology, 2013: p.130825095427009.
DOI: 10.1080/01496395.2013.809106
Google Scholar
[39]
Al-qudah, Y.H.F., G.A. Mahmoud, and M.A. Abdel Khalek, Radiation crosslinked poly (vinyl alcohol)/acrylic acid copolymer for removal of heavy metal ions from aqueous solutions. Journal of Radiation Research and Applied Sciences, 2014. 7(2): pp.135-145.
DOI: 10.1016/j.jrras.2013.12.008
Google Scholar
[40]
Chatterjee, S., T. Chatterjee, and S.H. Woo, A new type of chitosan hydrogel sorbent generated by anionic surfactant gelation. Bioresource Technology, 2010. 101(11): pp.3853-3858.
DOI: 10.1016/j.biortech.2009.12.089
Google Scholar
[41]
pH-responsive carboxymethylcellulose-g-poly(sodium acrylate)/polyvinylpyrrolidone semi-IPN hydrogels with enhanced responsive and swelling properties. Macromolecular Research, 2011. 19(1): p.57.
DOI: 10.1007/s13233-011-0112-9
Google Scholar
[42]
Alexander, J., Chapter 52 - Selenium, in Handbook on the Toxicology of Metals (Fourth Edition), G.F.N.A.F. Nordberg, Editor. 2015, Academic Press: San Diego. pp.1175-1208.
Google Scholar
[43]
Kowalik, R., Microgravimetric studeis of Selenium electrodeposition onto different substrates. Archives of metallurgy and materials 2014. 59(3): pp.872-877.
DOI: 10.2478/amm-2014-0147
Google Scholar