Electrochemical Characterization of Silver-Platinum Various Ratio Bimetallic Nanoparticles Modified Electrodes

Article Preview

Abstract:

Silver-platinum (Ag-Pt) bimetallic nanoparticles (NPs) with varying mole fractions (1:1, 1:3 and 3:1) were prepared by co-reduction of hexachloroplatinate and silver nitrate with sodium citrate. Upon successful formation of monometallic and bimetallic (BM) core shell nanoparticles, cyclic voltammetry (CV) was used to characterize the NPs. The drop coated nanofilms on the GC electrode showed characteristic peaks of monometallic Ag NPs; Ag+/Ag0 redox couple as well as the Pt NPs; hydrogen adsorption and desorption peaks. Varying current trends were observed in the BM NPs ratios as; GCE/Ag-Pt NPs 1:3 > GCE/Ag-Pt NPs 3:1 > GCE/Ag-Pt NPs 1:1. Fundamental electrochemical properties such as; diffusion coefficient (D), electroactive surface coverage, electrochemical band gaps and electron transfer coefficient (α) and charge (Q) were assessed using Randles - Sevcik plot. High charge and surface coverage was observed in GCE/Ag-Pt NPs 1:3 accounting for its enhanced current. GCE/Ag-Pt NPs 3:1 showed high diffusion coefficient while GCE/Ag-Pt NPs 1:1 possessed high electron transfer coefficient, which is facilitated by its heterogeneous rate constant relative to other BM NPs ratios. Surface redox reaction was determined as adsorption controlled in all modified GCEs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

114-125

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Aragay, F. Pino, A. Merkoçi, Nanomaterials for Sensing and Destroying Pesticides, Chem. Rev. 112 (2012) 5317-5338.

DOI: 10.1021/cr300020c

Google Scholar

[2] C.I.L. Justino, T.A.P.S. Rocha-Santos, Cardoso, A.C. Duarte, Strategies for enhancing the analytical performance of nanomaterial-based sensors, TrAC-Trends Anal. Chem. 47 (2013) 27-36.

DOI: 10.1016/j.trac.2013.02.004

Google Scholar

[3] N. Toshima, Y. Shiraishi, In: Hubbard, A.T. eds. Encyclopedia of Surface and Colloid Science. Marcel Dekker, New York, (2002) pp.879-886.

Google Scholar

[4] S. Khanal, G. Casillas, J.J. Velazquez-Salazar, A. Ponce and M. Jose-Yacaman, Atomic resolution imaging of polyhedral Pt-Pd core-shell nanoparticles by Cs-corrected STEM, J. Phys. Chem. C. 116(44) (2012) 23596-23602.

DOI: 10.1021/jp3092418

Google Scholar

[5] L. Zhang, Z. Fang, G.C. Zhao, X.W. Wei, Electrodeposited Platinum Nanoparticles on the Multi-Walled Carbon Nanotubes and its Electrocatalytic for Nitric Oxide, Int. J. Electrochem. Sci. 3 (2008) 746-754.

DOI: 10.1016/s1452-3981(23)15477-0

Google Scholar

[6] N. Zheng, X. Zhou, W. Yang, X. Li, Z. Yuan, Direct electrochemistry and electrocatalysis of heamoglobin immobilized in a magnetic nanoparticles-chitosan film, Talanta. 79(3) (2009) 780-786.

DOI: 10.1016/j.talanta.2009.05.002

Google Scholar

[7] S. Jingyu, H. Jianshu, C. Yanxia, Z. Xiaogang, Hydrothermal Synthesis of Pt-Ru/MWCNTs and its Electrocatalytic Properties for Oxidation of Methanol, Int. J. Electrochem. Sci. 2 (2007) 64-71.

DOI: 10.1016/s1452-3981(23)17052-0

Google Scholar

[8] H. Gao, J. Zhong, P. Qin, C. Lin, W. Sun, Microplate electrochemical DNA detection for phosphinothricin acetyltransferase gene sequence with cadmium sulfide nanoparticles, Microchem. J. 93(1) (2009) 78-81.

DOI: 10.1016/j.microc.2009.05.003

Google Scholar

[9] K. Can, M. Ozmen, M. Ersoz, Immobilization of albumin on aminosilane modified superparamagnetic magnetite nanoparticles and its characterization, Colloids Surf. B. 71(1) (2009) 154-159.

DOI: 10.1016/j.colsurfb.2009.01.021

Google Scholar

[10] R.F. Lane, A.T. Hubbard, Electrochemistry of chemisorbed molecules. I. Reactants connected to electrodes through olefinic substituents, J. Phys. Chem. 77(11) (1973) 1401-1410.

DOI: 10.1021/j100630a018

Google Scholar

[11] K.L. Brown, S.B. Gray, Cyclic voltammetric studies of electropolymerized films based on ruthenium(II/III)Bis(1, 10 phenanthroline)(4-methyl-4'vinyl-2, 2'-bibyridine), Int. J. Chem. 2(2) (2010) 3-9.

DOI: 10.5539/ijc.v2n2p3

Google Scholar

[12] J. Wang, Electrocatalytic reduction and flow injection analysis of organic peroxides at polymeric tetra-amino iron phthalocyanine modified electrode, Anal. Lett. 29(9) (1996) 1575-1587.

DOI: 10.1080/00032719608001506

Google Scholar

[13] L. Zheng, J.F. Song, Nickel (II)-baicalein complex modified multiwall carbon nanotube paste electrode and its electrocatalytic oxidation toward glycine, Anal. Biochem. 391(1) (2009) 56-63.

DOI: 10.1016/j.ab.2009.05.002

Google Scholar

[14] M.R. Ganjali, N. Motakef-Kazami, F. Faridbod, S. Khoee, P. Norouzi, Determination of Pb2+ ions by a modified carbon paste electrode based on multi-walled carbon nanotubes (MWCNTs) and nanosilica, J. Hazard. Mater. 173 (2010) 415-419.

DOI: 10.1016/j.jhazmat.2009.08.101

Google Scholar

[15] M. Mazloum-Ardakani, H. Rajabi, H. Beitollahi, B.B.F. Mirjalili, A. Akbari, N. Taghavinia, Voltammetric Determination of Dopamine at the Surface of TiO2 Nanoparticles Modified Carbon Paste Electrode, Int. J. Electrochem. Sci. 5 (2010) 147-157.

DOI: 10.1016/s1452-3981(23)15273-4

Google Scholar

[16] C. AitRamdane-Terbouche, A. Terbouche, S. Djebbar, D. Hauchard, Electrochemical sensors using modified electrodes based on copper complexes formed with Algerian humic acid modified with ethylenediamine or triethylenetetramine for determination of nitrite in water, Talanta, 119 (2014).

DOI: 10.1016/j.talanta.2013.10.049

Google Scholar

[17] J.G. Manjunatha, B.E. Kumara, S.G.P. Mamatha, U. Chandra, E. Niranjana, B.S. Sherigara, Cyclic Voltammetric Studies of Dopamine at Lamotrigine and TX-100 Modified Carbon Paste Electrode, Int. J. Electrochem. Sci. 4 (2009) 187-196.

DOI: 10.1016/s1452-3981(23)15120-0

Google Scholar

[18] W. Lu, G. Chang, Y. Luo, F. Liao and X. Sun, Method for effective immobilization of Ag nanoparticles/graphene oxide composites on single-stranded DNA modified gold electrode for enzymeless H2O2 detection, J. Mater. Sci. 46 (2011) 5260-5266.

DOI: 10.1007/s10853-011-5464-1

Google Scholar

[19] S.N. Pronkin, G.A. Tsirlina, O.A. Petrii, S. Yu. Vassiliev, Nanoparticles of Pt hydrosol immobilised on Au support: an approach to the study of structural effects in electrocatalysis, Electrochim. Acta. 46 (2001) 2343-2351.

DOI: 10.1016/s0013-4686(01)00441-8

Google Scholar

[20] P.R. Birkin, J.M. Elliot, Y.E. Watson, Electrochemical reduction of oxygen on mesoporous platinum microelectrodes, Chem. Commun. 17 (2000) 1693-1694.

DOI: 10.1039/b004468g

Google Scholar

[21] S.A.G. Evans, J.M. Elloit, L.M. Andrews, P.N. Barlett, P.J. Doyle, G. Denuault, Detection of Hydrogen Peroxide at Mesoporous Platinum Microelectrodes, Anal. Chem. 74(6) (2002) 1322-1326.

DOI: 10.1021/ac011052p

Google Scholar

[22] H.J. Kim, Y.S. Kim, M.H. Seo, S.M. Choi, J. Cho, G.W. Huber, W.B. Kim, Highly improved oxygen reduction performance over Pt/C-dispersed nanowire network catalysts, Electrochem Commun 12(1) (2010) 32-35.

DOI: 10.1016/j.elecom.2009.10.029

Google Scholar

[23] S. Hrapovic, Y.L. Liu, K.B. Male, J.H.T. Luong, Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes, Anal. Chem. 76 (2004) 1083-1088.

DOI: 10.1021/ac035143t

Google Scholar

[24] X.L. Rena, X.W. Menga, D. Chena, F. Tanga, J. Jiao, Using silver nanoparticles to enhance current response of biosensor, Biosens. Bioelectron. 21 (2005) 433.

Google Scholar

[25] T.Y. You, O. Niwa, M. Tomita, S. Hirono, Characterization of platinum nanoparticle-embedded carbon film electrode and its detection of hydrogen peroxide, Anal. Chem. 75 (2003) (2080).

DOI: 10.1021/ac026337w

Google Scholar

[26] S. Wu, H.T. Zhao, H.X. Ju, C.G. Shi, J.W. Zhao, Electrodeposition of silver-DNA hybrid nanoparticles for electrochemical sensing of hydrogen peroxide and glucose, Electrochem. Commun. 8 (2006) 1197.

DOI: 10.1016/j.elecom.2006.05.013

Google Scholar

[27] X.X. Chen, N. Li, K. Eckhard, L. Stoica, W. Xia, J. Assmann, M. Muhler, W. Schuhmann, Pulsed electrodeposition of Pt nanoclusters on carbon nanotubes modified carbon materials using diffusion restricting viscous electrolytes, Electrochem. Commun. 9(6) (2007).

DOI: 10.1016/j.elecom.2007.01.034

Google Scholar

[28] V. Selvaraj, A.N. Grace, M. Alagar, Electrocatalytic oxidation of formic acid and formaldehyde on nanoparticle decorated single walled carbon nanotubes, J. Colloids Interf. Sci. 333(1) (2009) 254-262.

DOI: 10.1016/j.jcis.2009.01.020

Google Scholar

[29] L.Q. Rong, C. Yang, Q.Y. Qian, X.H. Xia, Study of the nonenzymatic glucose sensor based on highly dispersed Pt nanoparticles supported on carbon nanotubes, Talanta. 72(2) (2007) 819-824.

DOI: 10.1016/j.talanta.2006.12.037

Google Scholar

[30] M. Tominaga, T. Shimazoe, M. Nagashima, I. Taniguchi, Composition-activity relationships of carbon electrode-supported bimetallic gold-silver nanoparticles in electrocatalytic oxidation of glucose, J. Electroanal. Chem. 615(1) (2008) 51-61.

DOI: 10.1016/j.jelechem.2007.11.030

Google Scholar

[31] C.C. Jin, Z.D. Chen, Electrocatalytic oxidation of glucose on gold-platinum nanocomposite electrodes and platinum-modified gold electrodes, Synth. Met. 157 (2007) 592-596.

DOI: 10.1016/j.synthmet.2007.06.010

Google Scholar

[32] P.H. Hindle, P.H.S. Nigro, M. Asmussen, A. Chen, Amperometric glucose sensor based on platinum–iridium nanomaterials, Electrochem. Commun. 10(10) (2008) 1438-1441.

DOI: 10.1016/j.elecom.2008.07.042

Google Scholar

[33] A. Sileikaite, I. Prosycevas, J. Puiso, A. Juraitis and A. Guobiene, Analysis of Silver Nanoparticles Produced by Chemical Reduction of Silver Salt Solution, Mater. Sci. 12(4) (2006) 287-291.

Google Scholar

[34] A. Harriman, G.R. Millward, P. Neta and M.C. Richoux, Interfacial electron-transfer reactions between platinum colloids and reducing radicals in aqueous solution, J. Phys. Chem. 92(5) (1988) 1286-1290.

DOI: 10.1021/j100316a054

Google Scholar

[35] G.F. Wang, W. Wang, J.F. Wu, H.Y. Liu, S.F. Jiao and B. Fang, Self-assembly of a silver nanoparticles modified electrode and its electrocatalysis on neutral red, Microchimica Acta. 164(1-2) (2009) 149-155.

DOI: 10.1007/s00604-008-0050-1

Google Scholar

[36] E.M. Hudak, J.T. Mortimer and H.B. Martin, Platinum for neural stimulation: Voltammetry considerations, J. Neural Eng. 7(2) (2010) 026005-026012.

DOI: 10.1088/1741-2560/7/2/026005

Google Scholar

[37] S.H. Lee, J.H. Jung, Y.M. Chae, J.F. Suh and J.Y. Kang, Fabrication and characterization of implantable and flexible nerve cuff electrodes with Pt, Ir and IrOx films deposited by RF sputtering, J. Micromech. Microeng. 20(3) (2010) 035015-035023.

DOI: 10.1088/0960-1317/20/3/035015

Google Scholar

[38] M.Q. Guo, H.S. Hong, X.N. Tang, H.D. Fang, X.H. Xu, Ultrasonic electrodeposition of platinum nanoflowers and their application in nonenzymatic glucose sensors, Electrochim. Acta. 63 (2012) 1-8.

DOI: 10.1016/j.electacta.2011.11.114

Google Scholar

[39] H. Gao, F. Xiao, C.B. Ching, H. Duan, One-step electrochemical synthesis of PtNi nanoparticle-graphene nanocomposites for nonenzymatic amperometric glucose detection, ACS Appl. Mater. Interfaces. 3 (2011) 3049-3057.

DOI: 10.1021/am200563f

Google Scholar

[40] S. Hrapovic, Y. Liu, K.B. Male, and J.H.T. Luong, Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes, Anal. Chem. 76(4) (2004) 1083-1088.

DOI: 10.1021/ac035143t

Google Scholar

[41] M.T. Sulak, O. Gokdogan, A. Gulce, H. Gulce, Amperometric glucose biosensor based on gold deposited PVF film on Pt electrode, Biosens. Bioelectron. 21 (2006) 1719-1726.

DOI: 10.1016/j.bios.2005.08.008

Google Scholar

[42] C.R. Raj, T. Okajima, T. Ohsaka, Gold nanoparticle arrays for the voltammetric sensing of dopamine, J. Electroanal. Chem. 543(2) (2003) 127-133.

DOI: 10.1016/s0022-0728(02)01481-x

Google Scholar

[43] M. Mazloum-Ardakani, H. Beitollahi, Z. Taleat, M. Salavati-Niasar, Fabrication and characterization of molybdenum (VI) complex-TiO2 nanoparticles modified electrode for the electrocatalytic determination of L-cysteine, J. Serb. Chem. Soc. 76 (4) (2011).

DOI: 10.2298/jsc100504042m

Google Scholar

[44] G. Karim-Nezhad, M. Hasanzadeh, L. Saghatforoush, N. Shadjou, S. Earshad and B. Khalilzadeh, Kinetic Study of Electrocatalytic Oxidation of Carbohydrates on Cobalt Hydroxide Modified Glassy Carbon Electrode, J. Braz. Chem. Soc. 20(1) (2009).

DOI: 10.1590/s0103-50532009000100022

Google Scholar

[45] A.J. Bard, L.R. Faulkner, Electrochemical Methods Fundamentals and Applications; Wiley New York. (1980) p.522.

Google Scholar

[46] P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C. Huang, G.X. Xie, Z.F. Liu, Use of iron oxide nanomaterials in wastewater treatment: a review, Sci. Total Environ. 424 (2012) 1-10.

DOI: 10.1016/j.scitotenv.2012.02.023

Google Scholar

[47] E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J. Electroanal. Chem. 101 (1979) 19-28.

DOI: 10.1016/s0022-0728(79)80075-3

Google Scholar

[48] M.I. Prodromidis, A.B. Florou, S.M. Tzouwara-Karayanni and M.I. Karayannis, The Importance of Surface Coverage in the Electrochemical Study of Chemically Modified Electrodes, Electroanal. 12 (2000) 1498-1501.

DOI: 10.1002/1521-4109(200012)12:18<1498::aid-elan1498>3.0.co;2-y

Google Scholar

[49] D.V. Pankratov, Y.S. Zeifman, A.V. Dudareva, G.K. Pankratova, M.E. Khlupova, Y.M. Parunova, D.N. Zajtsev, N.F. Bashirova, V.O. Popov and S.V. Shleev, Impact of Surface Modification with Gold Nanoparticles on the Bioelectrocatalytic Parameters of Immobilized Bilirubin Oxidase, Acta Naturae. 6(1) (2014).

DOI: 10.32607/20758251-2014-6-1-102-106

Google Scholar

[50] J. D'Souza, R.J. Mascarenhas, T. Thomas, B.M. Basavaraja, A.K. Saxena, K. Mukhopadhyay, D. Roy. Platinum decorated multi-walled carbon nanotubes/Triton X-100 modified carbon paste electrode for the sensitive amperometric determination of Paracetamol, J. Electroanal. Chem. 739 (2015).

DOI: 10.1016/j.jelechem.2014.12.012

Google Scholar

[51] M. Zheng, F. Gao, Q. Wang, X. Cai, S. Jiang, L. Huang, F. Gao, Electrocatalytical oxidation and sensitive determination of acetaminophen on glassy carbon electrode modified with graphene-chitosan composite, Mater. Sci. Eng. C Mater. Biol. Appl. 33(3) (2013).

DOI: 10.1016/j.msec.2012.12.055

Google Scholar

[52] X.H. Kang, J. Wang, H. Wu, A.I. Aksay, J. Liu, Y.H. Lin, Glucose Oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing, Biosens. Bioelectron. 25 (2009) 901-905.

DOI: 10.1016/j.bios.2009.09.004

Google Scholar

[53] L.H. Tang, Y. Wang, Y.M. Li, H.B. Feng, J. Lu, J.H. Li, Preparation, Structure, and Electrochemical Properties of Reduced Graphene Sheet Films, Adv. Funct. Mater. 19 (2009) 2782-2789.

DOI: 10.1002/adfm.200900377

Google Scholar

[54] A.E. Fischer, Y. Show, G.M. Swain, Electrochemical performance of diamond thin-film electrodes from different commercial sources, Anal. Chem. 76(9) (2004) 2553-2560.

DOI: 10.1021/ac035214o

Google Scholar

[55] J. Wang, Analytical Electrochemistry, 2nd ed., Wiley-VCH, New York, (2000) pp.32-35.

Google Scholar

[56] M. Shap, M. Petersson and K. Edstrom, Preliminary determinations of electron transfer kinetics involving ferrocene covalently attached to a platinum surface, J. Electroanal. Chem. 95 (1979) 123-130.

DOI: 10.1016/s0022-0728(79)80227-2

Google Scholar

[57] R.W. Murray, In: Bard, A.J. ed. Electroanalytical Chemistry. Marcel Dekker, New York, 13 (1984) pp.191-368.

Google Scholar