[1]
G. Aragay, F. Pino, A. Merkoçi, Nanomaterials for Sensing and Destroying Pesticides, Chem. Rev. 112 (2012) 5317-5338.
DOI: 10.1021/cr300020c
Google Scholar
[2]
C.I.L. Justino, T.A.P.S. Rocha-Santos, Cardoso, A.C. Duarte, Strategies for enhancing the analytical performance of nanomaterial-based sensors, TrAC-Trends Anal. Chem. 47 (2013) 27-36.
DOI: 10.1016/j.trac.2013.02.004
Google Scholar
[3]
N. Toshima, Y. Shiraishi, In: Hubbard, A.T. eds. Encyclopedia of Surface and Colloid Science. Marcel Dekker, New York, (2002) pp.879-886.
Google Scholar
[4]
S. Khanal, G. Casillas, J.J. Velazquez-Salazar, A. Ponce and M. Jose-Yacaman, Atomic resolution imaging of polyhedral Pt-Pd core-shell nanoparticles by Cs-corrected STEM, J. Phys. Chem. C. 116(44) (2012) 23596-23602.
DOI: 10.1021/jp3092418
Google Scholar
[5]
L. Zhang, Z. Fang, G.C. Zhao, X.W. Wei, Electrodeposited Platinum Nanoparticles on the Multi-Walled Carbon Nanotubes and its Electrocatalytic for Nitric Oxide, Int. J. Electrochem. Sci. 3 (2008) 746-754.
DOI: 10.1016/s1452-3981(23)15477-0
Google Scholar
[6]
N. Zheng, X. Zhou, W. Yang, X. Li, Z. Yuan, Direct electrochemistry and electrocatalysis of heamoglobin immobilized in a magnetic nanoparticles-chitosan film, Talanta. 79(3) (2009) 780-786.
DOI: 10.1016/j.talanta.2009.05.002
Google Scholar
[7]
S. Jingyu, H. Jianshu, C. Yanxia, Z. Xiaogang, Hydrothermal Synthesis of Pt-Ru/MWCNTs and its Electrocatalytic Properties for Oxidation of Methanol, Int. J. Electrochem. Sci. 2 (2007) 64-71.
DOI: 10.1016/s1452-3981(23)17052-0
Google Scholar
[8]
H. Gao, J. Zhong, P. Qin, C. Lin, W. Sun, Microplate electrochemical DNA detection for phosphinothricin acetyltransferase gene sequence with cadmium sulfide nanoparticles, Microchem. J. 93(1) (2009) 78-81.
DOI: 10.1016/j.microc.2009.05.003
Google Scholar
[9]
K. Can, M. Ozmen, M. Ersoz, Immobilization of albumin on aminosilane modified superparamagnetic magnetite nanoparticles and its characterization, Colloids Surf. B. 71(1) (2009) 154-159.
DOI: 10.1016/j.colsurfb.2009.01.021
Google Scholar
[10]
R.F. Lane, A.T. Hubbard, Electrochemistry of chemisorbed molecules. I. Reactants connected to electrodes through olefinic substituents, J. Phys. Chem. 77(11) (1973) 1401-1410.
DOI: 10.1021/j100630a018
Google Scholar
[11]
K.L. Brown, S.B. Gray, Cyclic voltammetric studies of electropolymerized films based on ruthenium(II/III)Bis(1, 10 phenanthroline)(4-methyl-4'vinyl-2, 2'-bibyridine), Int. J. Chem. 2(2) (2010) 3-9.
DOI: 10.5539/ijc.v2n2p3
Google Scholar
[12]
J. Wang, Electrocatalytic reduction and flow injection analysis of organic peroxides at polymeric tetra-amino iron phthalocyanine modified electrode, Anal. Lett. 29(9) (1996) 1575-1587.
DOI: 10.1080/00032719608001506
Google Scholar
[13]
L. Zheng, J.F. Song, Nickel (II)-baicalein complex modified multiwall carbon nanotube paste electrode and its electrocatalytic oxidation toward glycine, Anal. Biochem. 391(1) (2009) 56-63.
DOI: 10.1016/j.ab.2009.05.002
Google Scholar
[14]
M.R. Ganjali, N. Motakef-Kazami, F. Faridbod, S. Khoee, P. Norouzi, Determination of Pb2+ ions by a modified carbon paste electrode based on multi-walled carbon nanotubes (MWCNTs) and nanosilica, J. Hazard. Mater. 173 (2010) 415-419.
DOI: 10.1016/j.jhazmat.2009.08.101
Google Scholar
[15]
M. Mazloum-Ardakani, H. Rajabi, H. Beitollahi, B.B.F. Mirjalili, A. Akbari, N. Taghavinia, Voltammetric Determination of Dopamine at the Surface of TiO2 Nanoparticles Modified Carbon Paste Electrode, Int. J. Electrochem. Sci. 5 (2010) 147-157.
DOI: 10.1016/s1452-3981(23)15273-4
Google Scholar
[16]
C. AitRamdane-Terbouche, A. Terbouche, S. Djebbar, D. Hauchard, Electrochemical sensors using modified electrodes based on copper complexes formed with Algerian humic acid modified with ethylenediamine or triethylenetetramine for determination of nitrite in water, Talanta, 119 (2014).
DOI: 10.1016/j.talanta.2013.10.049
Google Scholar
[17]
J.G. Manjunatha, B.E. Kumara, S.G.P. Mamatha, U. Chandra, E. Niranjana, B.S. Sherigara, Cyclic Voltammetric Studies of Dopamine at Lamotrigine and TX-100 Modified Carbon Paste Electrode, Int. J. Electrochem. Sci. 4 (2009) 187-196.
DOI: 10.1016/s1452-3981(23)15120-0
Google Scholar
[18]
W. Lu, G. Chang, Y. Luo, F. Liao and X. Sun, Method for effective immobilization of Ag nanoparticles/graphene oxide composites on single-stranded DNA modified gold electrode for enzymeless H2O2 detection, J. Mater. Sci. 46 (2011) 5260-5266.
DOI: 10.1007/s10853-011-5464-1
Google Scholar
[19]
S.N. Pronkin, G.A. Tsirlina, O.A. Petrii, S. Yu. Vassiliev, Nanoparticles of Pt hydrosol immobilised on Au support: an approach to the study of structural effects in electrocatalysis, Electrochim. Acta. 46 (2001) 2343-2351.
DOI: 10.1016/s0013-4686(01)00441-8
Google Scholar
[20]
P.R. Birkin, J.M. Elliot, Y.E. Watson, Electrochemical reduction of oxygen on mesoporous platinum microelectrodes, Chem. Commun. 17 (2000) 1693-1694.
DOI: 10.1039/b004468g
Google Scholar
[21]
S.A.G. Evans, J.M. Elloit, L.M. Andrews, P.N. Barlett, P.J. Doyle, G. Denuault, Detection of Hydrogen Peroxide at Mesoporous Platinum Microelectrodes, Anal. Chem. 74(6) (2002) 1322-1326.
DOI: 10.1021/ac011052p
Google Scholar
[22]
H.J. Kim, Y.S. Kim, M.H. Seo, S.M. Choi, J. Cho, G.W. Huber, W.B. Kim, Highly improved oxygen reduction performance over Pt/C-dispersed nanowire network catalysts, Electrochem Commun 12(1) (2010) 32-35.
DOI: 10.1016/j.elecom.2009.10.029
Google Scholar
[23]
S. Hrapovic, Y.L. Liu, K.B. Male, J.H.T. Luong, Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes, Anal. Chem. 76 (2004) 1083-1088.
DOI: 10.1021/ac035143t
Google Scholar
[24]
X.L. Rena, X.W. Menga, D. Chena, F. Tanga, J. Jiao, Using silver nanoparticles to enhance current response of biosensor, Biosens. Bioelectron. 21 (2005) 433.
Google Scholar
[25]
T.Y. You, O. Niwa, M. Tomita, S. Hirono, Characterization of platinum nanoparticle-embedded carbon film electrode and its detection of hydrogen peroxide, Anal. Chem. 75 (2003) (2080).
DOI: 10.1021/ac026337w
Google Scholar
[26]
S. Wu, H.T. Zhao, H.X. Ju, C.G. Shi, J.W. Zhao, Electrodeposition of silver-DNA hybrid nanoparticles for electrochemical sensing of hydrogen peroxide and glucose, Electrochem. Commun. 8 (2006) 1197.
DOI: 10.1016/j.elecom.2006.05.013
Google Scholar
[27]
X.X. Chen, N. Li, K. Eckhard, L. Stoica, W. Xia, J. Assmann, M. Muhler, W. Schuhmann, Pulsed electrodeposition of Pt nanoclusters on carbon nanotubes modified carbon materials using diffusion restricting viscous electrolytes, Electrochem. Commun. 9(6) (2007).
DOI: 10.1016/j.elecom.2007.01.034
Google Scholar
[28]
V. Selvaraj, A.N. Grace, M. Alagar, Electrocatalytic oxidation of formic acid and formaldehyde on nanoparticle decorated single walled carbon nanotubes, J. Colloids Interf. Sci. 333(1) (2009) 254-262.
DOI: 10.1016/j.jcis.2009.01.020
Google Scholar
[29]
L.Q. Rong, C. Yang, Q.Y. Qian, X.H. Xia, Study of the nonenzymatic glucose sensor based on highly dispersed Pt nanoparticles supported on carbon nanotubes, Talanta. 72(2) (2007) 819-824.
DOI: 10.1016/j.talanta.2006.12.037
Google Scholar
[30]
M. Tominaga, T. Shimazoe, M. Nagashima, I. Taniguchi, Composition-activity relationships of carbon electrode-supported bimetallic gold-silver nanoparticles in electrocatalytic oxidation of glucose, J. Electroanal. Chem. 615(1) (2008) 51-61.
DOI: 10.1016/j.jelechem.2007.11.030
Google Scholar
[31]
C.C. Jin, Z.D. Chen, Electrocatalytic oxidation of glucose on gold-platinum nanocomposite electrodes and platinum-modified gold electrodes, Synth. Met. 157 (2007) 592-596.
DOI: 10.1016/j.synthmet.2007.06.010
Google Scholar
[32]
P.H. Hindle, P.H.S. Nigro, M. Asmussen, A. Chen, Amperometric glucose sensor based on platinum–iridium nanomaterials, Electrochem. Commun. 10(10) (2008) 1438-1441.
DOI: 10.1016/j.elecom.2008.07.042
Google Scholar
[33]
A. Sileikaite, I. Prosycevas, J. Puiso, A. Juraitis and A. Guobiene, Analysis of Silver Nanoparticles Produced by Chemical Reduction of Silver Salt Solution, Mater. Sci. 12(4) (2006) 287-291.
Google Scholar
[34]
A. Harriman, G.R. Millward, P. Neta and M.C. Richoux, Interfacial electron-transfer reactions between platinum colloids and reducing radicals in aqueous solution, J. Phys. Chem. 92(5) (1988) 1286-1290.
DOI: 10.1021/j100316a054
Google Scholar
[35]
G.F. Wang, W. Wang, J.F. Wu, H.Y. Liu, S.F. Jiao and B. Fang, Self-assembly of a silver nanoparticles modified electrode and its electrocatalysis on neutral red, Microchimica Acta. 164(1-2) (2009) 149-155.
DOI: 10.1007/s00604-008-0050-1
Google Scholar
[36]
E.M. Hudak, J.T. Mortimer and H.B. Martin, Platinum for neural stimulation: Voltammetry considerations, J. Neural Eng. 7(2) (2010) 026005-026012.
DOI: 10.1088/1741-2560/7/2/026005
Google Scholar
[37]
S.H. Lee, J.H. Jung, Y.M. Chae, J.F. Suh and J.Y. Kang, Fabrication and characterization of implantable and flexible nerve cuff electrodes with Pt, Ir and IrOx films deposited by RF sputtering, J. Micromech. Microeng. 20(3) (2010) 035015-035023.
DOI: 10.1088/0960-1317/20/3/035015
Google Scholar
[38]
M.Q. Guo, H.S. Hong, X.N. Tang, H.D. Fang, X.H. Xu, Ultrasonic electrodeposition of platinum nanoflowers and their application in nonenzymatic glucose sensors, Electrochim. Acta. 63 (2012) 1-8.
DOI: 10.1016/j.electacta.2011.11.114
Google Scholar
[39]
H. Gao, F. Xiao, C.B. Ching, H. Duan, One-step electrochemical synthesis of PtNi nanoparticle-graphene nanocomposites for nonenzymatic amperometric glucose detection, ACS Appl. Mater. Interfaces. 3 (2011) 3049-3057.
DOI: 10.1021/am200563f
Google Scholar
[40]
S. Hrapovic, Y. Liu, K.B. Male, and J.H.T. Luong, Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes, Anal. Chem. 76(4) (2004) 1083-1088.
DOI: 10.1021/ac035143t
Google Scholar
[41]
M.T. Sulak, O. Gokdogan, A. Gulce, H. Gulce, Amperometric glucose biosensor based on gold deposited PVF film on Pt electrode, Biosens. Bioelectron. 21 (2006) 1719-1726.
DOI: 10.1016/j.bios.2005.08.008
Google Scholar
[42]
C.R. Raj, T. Okajima, T. Ohsaka, Gold nanoparticle arrays for the voltammetric sensing of dopamine, J. Electroanal. Chem. 543(2) (2003) 127-133.
DOI: 10.1016/s0022-0728(02)01481-x
Google Scholar
[43]
M. Mazloum-Ardakani, H. Beitollahi, Z. Taleat, M. Salavati-Niasar, Fabrication and characterization of molybdenum (VI) complex-TiO2 nanoparticles modified electrode for the electrocatalytic determination of L-cysteine, J. Serb. Chem. Soc. 76 (4) (2011).
DOI: 10.2298/jsc100504042m
Google Scholar
[44]
G. Karim-Nezhad, M. Hasanzadeh, L. Saghatforoush, N. Shadjou, S. Earshad and B. Khalilzadeh, Kinetic Study of Electrocatalytic Oxidation of Carbohydrates on Cobalt Hydroxide Modified Glassy Carbon Electrode, J. Braz. Chem. Soc. 20(1) (2009).
DOI: 10.1590/s0103-50532009000100022
Google Scholar
[45]
A.J. Bard, L.R. Faulkner, Electrochemical Methods Fundamentals and Applications; Wiley New York. (1980) p.522.
Google Scholar
[46]
P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C. Huang, G.X. Xie, Z.F. Liu, Use of iron oxide nanomaterials in wastewater treatment: a review, Sci. Total Environ. 424 (2012) 1-10.
DOI: 10.1016/j.scitotenv.2012.02.023
Google Scholar
[47]
E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J. Electroanal. Chem. 101 (1979) 19-28.
DOI: 10.1016/s0022-0728(79)80075-3
Google Scholar
[48]
M.I. Prodromidis, A.B. Florou, S.M. Tzouwara-Karayanni and M.I. Karayannis, The Importance of Surface Coverage in the Electrochemical Study of Chemically Modified Electrodes, Electroanal. 12 (2000) 1498-1501.
DOI: 10.1002/1521-4109(200012)12:18<1498::aid-elan1498>3.0.co;2-y
Google Scholar
[49]
D.V. Pankratov, Y.S. Zeifman, A.V. Dudareva, G.K. Pankratova, M.E. Khlupova, Y.M. Parunova, D.N. Zajtsev, N.F. Bashirova, V.O. Popov and S.V. Shleev, Impact of Surface Modification with Gold Nanoparticles on the Bioelectrocatalytic Parameters of Immobilized Bilirubin Oxidase, Acta Naturae. 6(1) (2014).
DOI: 10.32607/20758251-2014-6-1-102-106
Google Scholar
[50]
J. D'Souza, R.J. Mascarenhas, T. Thomas, B.M. Basavaraja, A.K. Saxena, K. Mukhopadhyay, D. Roy. Platinum decorated multi-walled carbon nanotubes/Triton X-100 modified carbon paste electrode for the sensitive amperometric determination of Paracetamol, J. Electroanal. Chem. 739 (2015).
DOI: 10.1016/j.jelechem.2014.12.012
Google Scholar
[51]
M. Zheng, F. Gao, Q. Wang, X. Cai, S. Jiang, L. Huang, F. Gao, Electrocatalytical oxidation and sensitive determination of acetaminophen on glassy carbon electrode modified with graphene-chitosan composite, Mater. Sci. Eng. C Mater. Biol. Appl. 33(3) (2013).
DOI: 10.1016/j.msec.2012.12.055
Google Scholar
[52]
X.H. Kang, J. Wang, H. Wu, A.I. Aksay, J. Liu, Y.H. Lin, Glucose Oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing, Biosens. Bioelectron. 25 (2009) 901-905.
DOI: 10.1016/j.bios.2009.09.004
Google Scholar
[53]
L.H. Tang, Y. Wang, Y.M. Li, H.B. Feng, J. Lu, J.H. Li, Preparation, Structure, and Electrochemical Properties of Reduced Graphene Sheet Films, Adv. Funct. Mater. 19 (2009) 2782-2789.
DOI: 10.1002/adfm.200900377
Google Scholar
[54]
A.E. Fischer, Y. Show, G.M. Swain, Electrochemical performance of diamond thin-film electrodes from different commercial sources, Anal. Chem. 76(9) (2004) 2553-2560.
DOI: 10.1021/ac035214o
Google Scholar
[55]
J. Wang, Analytical Electrochemistry, 2nd ed., Wiley-VCH, New York, (2000) pp.32-35.
Google Scholar
[56]
M. Shap, M. Petersson and K. Edstrom, Preliminary determinations of electron transfer kinetics involving ferrocene covalently attached to a platinum surface, J. Electroanal. Chem. 95 (1979) 123-130.
DOI: 10.1016/s0022-0728(79)80227-2
Google Scholar
[57]
R.W. Murray, In: Bard, A.J. ed. Electroanalytical Chemistry. Marcel Dekker, New York, 13 (1984) pp.191-368.
Google Scholar