[1]
T. Suzuki, M. Awano, P. Jasinski, V. Petrovsky, H.U. Anderson, Composite (La, Sr)MnO3–YSZ cathode for SOFC, Solid State Ionics. 177 (2006) 2071-(2074).
DOI: 10.1016/j.ssi.2005.12.016
Google Scholar
[2]
S.P. Jiang, W. Wang, Novel structured mixed ionic and electronic conducting cathodes of solid oxide fuel cells, Solid State Ionics. 176 (2005) 1351-1357.
DOI: 10.1016/j.ssi.2005.03.011
Google Scholar
[3]
H. Fukunaga, M. Koyama, N. Takahashi, C. Wen, K. Yamada, Reaction model of dense Sm0. 5Sr0. 5CoO3 as SOFC cathode, Solid State Ionics. 132 (2000) 279-285.
DOI: 10.1016/s0167-2738(00)00642-1
Google Scholar
[4]
C. Xia, W. Rauch, F. Chen, M. Liu, Sm0. 5Sr0. 5CoO3 cathodes for low-temperature SOFCs, Solid State Ionics. 149 (2002) 11-19.
DOI: 10.1016/s0167-2738(02)00131-5
Google Scholar
[5]
Z.P. Shao, S.M. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells, Nature. 431 (2004) 170-173.
DOI: 10.1038/nature02863
Google Scholar
[6]
B. Wei, Z. Lu, X. Huang, S. Li, G. Ai, Z. Liu, W. Su, Electrochemical characteristics of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3−δ–Sm0. 2Ce0. 8O1. 9 composite materials for low-temperature solid oxide fuel cell cathodes, Mater. Lett. 60 (2006) 3642 - 3646.
DOI: 10.1016/j.matlet.2006.03.075
Google Scholar
[7]
W. Zhu, Z. Lu, S. Li, B. Wei, J. Miao, X. Huang, K. Chen, N. Ai, W. Su, Study on Ba0. 5Sr0. 5Co0. 8Fe0. 2O3−δ–Sm0. 5Sr0. 5CoO3−δ composite cathode materials for IT-SOFCs, J. Alloys Compd. 465 (2008) 274-279.
DOI: 10.1016/j.jallcom.2007.10.048
Google Scholar
[8]
M.T. Colomer, B.C.H. Steele, J.A. Kilner, Structural and electrochemical properties of the Sr0. 8Ce0. 1Fe0. 7Co0. 3O3−δ perovskite as cathode material for ITSOFCs, Solid State Ionics. 147 (2002) 41-48.
DOI: 10.1016/s0167-2738(02)00002-4
Google Scholar
[9]
C. B. Njoku, P. G. Ndungu, Synthesis and characterization of novel Ce0. 8Sm0. 2Fe0. 9Ir0. 03Co0. 07O3−δ perovskite material and possible application as a cathode for low–intermediate temperature SOFCs, Mater. Res. Bull. 68 (2015) 100-108.
DOI: 10.1016/j.materresbull.2015.03.029
Google Scholar
[10]
H. Choi, A. Fuller, J. Davis, C. Wielgus, et al., Ce-doped strontium cobalt ferrite perovskites as cathode catalysts for solid oxide fuel cells: Effect of dopant concentration. Appl. Catal., B, 127 (2012) 336-341.
DOI: 10.1016/j.apcatb.2012.08.027
Google Scholar
[11]
Q. Zhou, Y. Cheng, W. Li, X. Yang, J. Liu, D. An, X. Tong, B. Zhong, W. Wang, Investigation of cobalt-free perovskite Sr2FeTi0. 75Mo0. 25O6−δ as new cathode for solid oxide fuel cells. Materials Research Bulletin, 2016. 74: pp.129-133.
DOI: 10.1016/j.materresbull.2015.09.023
Google Scholar
[12]
H. Kishimoto, Y. -P. Xiong, K. Yamaji, T. Horita, N. Sakai, M. E. Brito, H. Yokokawa, Stability of Ni Base Anode for Direct Hydrocarbon SOFCs, J. Chem. Eng. Jpn. 40 (2007) 1178-1182.
DOI: 10.1252/jcej.07we157
Google Scholar
[13]
L. Zhang, R. Lan, A. Kraft, S. Tao, A stable intermediate temperature fuel cell based on doped-ceria–carbonate composite electrolyte and perovskite cathode, Electrochem. Commun. 13 (2011) 582-585.
DOI: 10.1016/j.elecom.2011.03.015
Google Scholar
[14]
J. Huang, Z. Mao, Z. Liu, C. Wang, Development of novel low-temperature SOFCs with co-ionic conducting SDC-carbonate composite electrolytes, Electrochem. Commun. 9 (2007) 2601-2605.
DOI: 10.1016/j.elecom.2007.07.036
Google Scholar
[15]
M. Benamira, A. Ringuede, V. Albin, R. Vannier, L. Hildebrandt, C. Lagergren, M. Cassir, Gadolinia-doped ceria mixed with alkali carbonates for solid oxide fuel cell applications: I. A thermal, structural and morphological insight, J. Power Sources, 196 (2011).
DOI: 10.1016/j.jpowsour.2011.02.004
Google Scholar
[16]
Q. L. Liu, K. A. Khor, S. H. Chan, High-performance low-temperature solid oxide fuel cell with novel BSCF cathode, J. Power Sources 161, 1(2006) 123-128.
DOI: 10.1016/j.jpowsour.2006.03.095
Google Scholar
[17]
N. F. P. Ribeiro, M. M. V. M. Souza, O. R. M. Neto, S. M. R. Vasconcelos, M. Schmal, Investigating the microstructure and catalytic properties of Ni/YSZ cermets as anodes for SOFC applications, Appl. Catal. A 353 (2009) 305.
DOI: 10.1016/j.apcata.2008.11.004
Google Scholar
[18]
X. Wang, Y. Ma, R. Raza, M. Muhammed and B. Zhu, Novel core–shell SDC/amorphous Na2CO3 nanocomposite electrolyte for low-temperature SOFCs, Electrochem. Commun. 10 (2008) 1617-1620.
DOI: 10.1016/j.elecom.2008.08.023
Google Scholar
[19]
L. Fan, C. Wang, M. Chen, J. Di, J. Zheng, B. Zhu, Potential low-temperature application and hybrid-ionic conducting property of ceria-carbonate composite electrolytes for solid oxide fuel cells, Int. J. Hydrogen Energy 36 (2011) 9987-9993.
DOI: 10.1016/j.ijhydene.2011.05.055
Google Scholar
[20]
J. Di, M. Chen, C. Wang, J. Zheng, L. Fan, B. Zhu, Samarium doped ceria–(Li/Na)2CO3 composite electrolyte and its electrochemical properties in low temperature solid oxide fuel cell, J. Power Sources 195 (2010) 4695-4699.
DOI: 10.1016/j.jpowsour.2010.02.066
Google Scholar
[21]
Y. -C. Hou, M. -W. Ding, S. -K. Liu, S. -K. Wu, Y. -C. Lin, Ni-substituted LaMnO3 perovskites for ethanol oxidation. RSC Adv. 4 (2014) 5329-5338.
DOI: 10.1039/c3ra46323k
Google Scholar
[22]
C. Sameera Devi, G.S. Kumar, G. Prasad, Spectroscopic and electrical studies on nd3+, zr4+ ions doped nano-sized batio3 ferroelectrics prepared by sol–gel method. Spectrochim. Acta, Part A, 136 (2015) 366-372.
DOI: 10.1016/j.saa.2014.09.042
Google Scholar
[23]
C.O. Augustin, L.J. Berchmans, R. Kalai Selvan, Structural, electrical and electrochemical properties of co-precipitated SrFeO3−δ. Mater. Lett. 58 (2004) 1260-1266.
DOI: 10.1016/j.matlet.2003.09.018
Google Scholar
[24]
H.T. Handal, A. Hassan, R. Leeson, S.M. Eloui, M. Fritxpatrick, V. Thangadurai, Profound understanding of effect of transition metal dopant, sintering temperature, and pO2 on the electrical and optical properties of proton conducting BaCe0. 9Sm0. 1O3−δ. Inorg. Chem., 55 (2016).
DOI: 10.1021/acs.inorgchem.5b02171
Google Scholar
[25]
Y. Tao, J. Shao, J. Wang, W. G. Wang, Morphology control of Ce0. 9Gd0. 1O1. 95 nanopowder synthesized by sol–gel method using PVP as a surfactant, J. Alloys Compd. 484 (2009) 729-733.
DOI: 10.1016/j.jallcom.2009.05.027
Google Scholar
[26]
O. N. Shebanova, P. Lazer, Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum, J. Solid State Chem. 174 (2003) 424-430.
DOI: 10.1016/s0022-4596(03)00294-9
Google Scholar
[27]
M. Guo, J. Lu, Y. Wu, Y. Wang, M. Luo, UV and Visible Raman Studies of Oxygen Vacancies in Rare-Earth-Doped Ceria, Langmuir, 27 (2011) 3872-77.
DOI: 10.1021/la200292f
Google Scholar
[28]
M. James, K.S. Wallwork, R.L. Withers, D.J. Goossens, K. F. Wilson, J. Horvat, X. L. Wang, M. Colella, Structure and magnetism in the oxygen-deficient perovskites Ce1−xSrxCoO3−δ (x ≥ 0. 90). Mater. Res. Bull., 40 (2005) 1415-1431.
DOI: 10.1016/j.materresbull.2005.03.025
Google Scholar
[29]
A.V. Korotcov, Y. -S. Huang, K. -K. Tiong, D. -S. Tsai. Raman scattering characterization of well-aligned RuO2 and IrO2 nanocrystals J. Raman Spectrosc. 38 (2007) 737-749.
DOI: 10.1002/jrs.1655
Google Scholar
[30]
M. de los Reyes, K. R. Whittle, Z. Zhang, S. E. Ashbrook, M. R. Mitchell, L. -Y. Jang, G. R. Lumpkin, The pyrochlore to defect fluorite phase transition in Y2Sn2-xZrxO7 RSC Advances 3 (2013) 5090-99.
DOI: 10.1039/c3ra22704a
Google Scholar
[31]
Z. Wu, M. Li, J. Howe, H. M. Meyer, S. H. Overbury. Probing Defect Sites on CeO2 Nanocrystals with Well-Defined Surface Planes by Raman Spectroscopy and O2 Adsorption, Langmuir, 26 (2010) 16595-16606.
DOI: 10.1021/la101723w
Google Scholar
[32]
E.J. Baran, Structural chemistry and physicochemical properties of perovskite-like materials. Catal. Today, (8) 1990 133-151.
DOI: 10.1016/0920-5861(90)87015-u
Google Scholar
[33]
C.D. Chandler, C. Roger, M.J. Hampden-Smith, Chemical aspects of solution routes to perovskite-phase mixed-metal oxides from metal-organic precursors. Chem. Rev., 93 (1993) 1205-1241.
DOI: 10.1021/cr00019a015
Google Scholar
[34]
A.M. Cruz, L. Abad, N.M. Carretero, J. Moral-Vico, J. Fraxedas, P. Lozano, G. Subías, V. Padial, M. Carballo, J. E. Collazos-Castro, N. Casañ-Pastor, Iridium oxohydroxide, a significant member in the family of iridium oxides. Stoichiometry, characterization, and implications in bioelectrodes. J. Phys. Chem. C, 116 (2012).
DOI: 10.1021/jp212275q
Google Scholar
[35]
R. Hufschmid, H. Arami, R.M. Ferguson, M. Gonzales, E. Teeman, L. N. Brush, N. D. Browning, K. M. Krishnan, Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale, 7 (2015) 11142-11154.
DOI: 10.1039/c5nr01651g
Google Scholar
[36]
W. Yang, T. Hong, S. Li, Z. Ma, C. Sun, C. Xia, L. Chen, Perovskite Sr1–xCexCoO3−δ (0. 05 ≤ x ≤ 0. 15) as superior cathodes for intermediate temperature solid oxide fuel cells. ACS Appl. Mater. Interfaces, 5 (2013) 1143-1148.
DOI: 10.1021/am3029238
Google Scholar
[37]
J. Ryu, R. O'Hayre, H. Lee, Structural analysis and electrochemical properties of cobalt-doped Sr0. 9Ce0. 1MnO3−δ cathode for IT-SOFCs. J. Mater. Res., 29 (2014) 2667-2672.
DOI: 10.1557/jmr.2014.306
Google Scholar
[38]
A. Botea-Petcu, S. Tanasescu, V. Varazashvili, N. Lejava, T. Machaladze, M. Khundadze, F. Maxim, F. Teodorescu, J. Martynczuk, Z. Yáng, L. J. Gauckler, Thermodynamic data of Ba0. 6Sr0. 4Co0. 8Fe0. 2O3−δ SOFC cathode material. Mater. Res. Bull., 57 (2014).
DOI: 10.1016/j.materresbull.2014.06.002
Google Scholar
[39]
R. Mueller, H.K. Kammler, K. Wegner, S.E. Pratsinis, OH surface density of SiO2 and TiO2 by thermogravimetric analysis. Langmuir, 19 (2003) 160-165.
DOI: 10.1021/la025785w
Google Scholar
[40]
J. Hanna, W.Y. Lee, Y. Shi, and A.F. Ghoniem, Fundamentals of electro- and thermochemistry in the anode of solid-oxide fuel cells with hydrocarbon and syngas fuels. Prog. Energy Combust. Sci., 40 (2014) 74-111.
DOI: 10.1016/j.pecs.2013.10.001
Google Scholar
[41]
D.P. Rupasov, A.V. Berenov, J.A. Kilner, S.Y. Istomin, E. V. Antipov, Oxygen diffusion in Sr0. 75Y0. 25CoO2. 62. Solid State Ionics, 197 (2011) 18-24.
DOI: 10.1016/j.ssi.2011.06.016
Google Scholar
[42]
I. Park, J. Choi, H. Lee, and D. Shin, Optimization of Sm0. 5Sr0. 5CoO3−δ–Sm0. 2Ce0. 8O2−δ composite cathodes fabricated by electrostatic slurry spray deposition. Ceram. Int., 39 (2013) 5561-5569.
DOI: 10.1016/j.ceramint.2012.12.070
Google Scholar
[43]
D. Chen, C. Chen, Z.M. Baiyee, Z. Shao, F. Ciucci, Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chem. Rev., 115 (2015) 9869-9921.
DOI: 10.1021/acs.chemrev.5b00073
Google Scholar