Evaluation of Novel Nanophase Ce0.8Sr0.2Fe0.9Ir0.1O3-δ as Cathode Material for Low Temperature SOFC

Article Preview

Abstract:

In this study, Ce0.8Sr0.2Fe0.9Ir0.1O3-δ (CSFI) perovskite type material was prepared by sol-gel technique, characterised, and then tested as a cathode material for solid oxide fuel cells operating between 300 – 500 °C. The materials were studied using X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The morphology was examined using scanning electron microscopy and high resolution transmission electron microscopy. Samples showed changes in the overall structure and defect chemistry with an increase in calcination temperature. When tested as cathode materials, the material calcined at 1000 °C had the greatest performance at a test temperature of 500 °C, with a current density of 774.47 mA/cm2, a power density of 483.07 mW/cm2 and an area specific resistance (ASR) of 0.342 Ω/cm2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-50

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Suzuki, M. Awano, P. Jasinski, V. Petrovsky, H.U. Anderson, Composite (La, Sr)MnO3–YSZ cathode for SOFC, Solid State Ionics. 177 (2006) 2071-(2074).

DOI: 10.1016/j.ssi.2005.12.016

Google Scholar

[2] S.P. Jiang, W. Wang, Novel structured mixed ionic and electronic conducting cathodes of solid oxide fuel cells, Solid State Ionics. 176 (2005) 1351-1357.

DOI: 10.1016/j.ssi.2005.03.011

Google Scholar

[3] H. Fukunaga, M. Koyama, N. Takahashi, C. Wen, K. Yamada, Reaction model of dense Sm0. 5Sr0. 5CoO3 as SOFC cathode, Solid State Ionics. 132 (2000) 279-285.

DOI: 10.1016/s0167-2738(00)00642-1

Google Scholar

[4] C. Xia, W. Rauch, F. Chen, M. Liu, Sm0. 5Sr0. 5CoO3 cathodes for low-temperature SOFCs, Solid State Ionics. 149 (2002) 11-19.

DOI: 10.1016/s0167-2738(02)00131-5

Google Scholar

[5] Z.P. Shao, S.M. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells, Nature. 431 (2004) 170-173.

DOI: 10.1038/nature02863

Google Scholar

[6] B. Wei, Z. Lu, X. Huang, S. Li, G. Ai, Z. Liu, W. Su, Electrochemical characteristics of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3−δ–Sm0. 2Ce0. 8O1. 9 composite materials for low-temperature solid oxide fuel cell cathodes, Mater. Lett. 60 (2006) 3642 - 3646.

DOI: 10.1016/j.matlet.2006.03.075

Google Scholar

[7] W. Zhu, Z. Lu, S. Li, B. Wei, J. Miao, X. Huang, K. Chen, N. Ai, W. Su, Study on Ba0. 5Sr0. 5Co0. 8Fe0. 2O3−δ–Sm0. 5Sr0. 5CoO3−δ composite cathode materials for IT-SOFCs, J. Alloys Compd. 465 (2008) 274-279.

DOI: 10.1016/j.jallcom.2007.10.048

Google Scholar

[8] M.T. Colomer, B.C.H. Steele, J.A. Kilner, Structural and electrochemical properties of the Sr0. 8Ce0. 1Fe0. 7Co0. 3O3−δ perovskite as cathode material for ITSOFCs, Solid State Ionics. 147 (2002) 41-48.

DOI: 10.1016/s0167-2738(02)00002-4

Google Scholar

[9] C. B. Njoku, P. G. Ndungu, Synthesis and characterization of novel Ce0. 8Sm0. 2Fe0. 9Ir0. 03Co0. 07O3−δ perovskite material and possible application as a cathode for low–intermediate temperature SOFCs, Mater. Res. Bull. 68 (2015) 100-108.

DOI: 10.1016/j.materresbull.2015.03.029

Google Scholar

[10] H. Choi, A. Fuller, J. Davis, C. Wielgus, et al., Ce-doped strontium cobalt ferrite perovskites as cathode catalysts for solid oxide fuel cells: Effect of dopant concentration. Appl. Catal., B, 127 (2012) 336-341.

DOI: 10.1016/j.apcatb.2012.08.027

Google Scholar

[11] Q. Zhou, Y. Cheng, W. Li, X. Yang, J. Liu, D. An, X. Tong, B. Zhong, W. Wang, Investigation of cobalt-free perovskite Sr2FeTi0. 75Mo0. 25O6−δ as new cathode for solid oxide fuel cells. Materials Research Bulletin, 2016. 74: pp.129-133.

DOI: 10.1016/j.materresbull.2015.09.023

Google Scholar

[12] H. Kishimoto, Y. -P. Xiong, K. Yamaji, T. Horita, N. Sakai, M. E. Brito, H. Yokokawa, Stability of Ni Base Anode for Direct Hydrocarbon SOFCs, J. Chem. Eng. Jpn. 40 (2007) 1178-1182.

DOI: 10.1252/jcej.07we157

Google Scholar

[13] L. Zhang, R. Lan, A. Kraft, S. Tao, A stable intermediate temperature fuel cell based on doped-ceria–carbonate composite electrolyte and perovskite cathode, Electrochem. Commun. 13 (2011) 582-585.

DOI: 10.1016/j.elecom.2011.03.015

Google Scholar

[14] J. Huang, Z. Mao, Z. Liu, C. Wang, Development of novel low-temperature SOFCs with co-ionic conducting SDC-carbonate composite electrolytes, Electrochem. Commun. 9 (2007) 2601-2605.

DOI: 10.1016/j.elecom.2007.07.036

Google Scholar

[15] M. Benamira, A. Ringuede, V. Albin, R. Vannier, L. Hildebrandt, C. Lagergren, M. Cassir, Gadolinia-doped ceria mixed with alkali carbonates for solid oxide fuel cell applications: I. A thermal, structural and morphological insight, J. Power Sources, 196 (2011).

DOI: 10.1016/j.jpowsour.2011.02.004

Google Scholar

[16] Q. L. Liu, K. A. Khor, S. H. Chan, High-performance low-temperature solid oxide fuel cell with novel BSCF cathode, J. Power Sources 161, 1(2006) 123-128.

DOI: 10.1016/j.jpowsour.2006.03.095

Google Scholar

[17] N. F. P. Ribeiro, M. M. V. M. Souza, O. R. M. Neto, S. M. R. Vasconcelos, M. Schmal, Investigating the microstructure and catalytic properties of Ni/YSZ cermets as anodes for SOFC applications, Appl. Catal. A 353 (2009) 305.

DOI: 10.1016/j.apcata.2008.11.004

Google Scholar

[18] X. Wang, Y. Ma, R. Raza, M. Muhammed and B. Zhu, Novel core–shell SDC/amorphous Na2CO3 nanocomposite electrolyte for low-temperature SOFCs, Electrochem. Commun. 10 (2008) 1617-1620.

DOI: 10.1016/j.elecom.2008.08.023

Google Scholar

[19] L. Fan, C. Wang, M. Chen, J. Di, J. Zheng, B. Zhu, Potential low-temperature application and hybrid-ionic conducting property of ceria-carbonate composite electrolytes for solid oxide fuel cells, Int. J. Hydrogen Energy 36 (2011) 9987-9993.

DOI: 10.1016/j.ijhydene.2011.05.055

Google Scholar

[20] J. Di, M. Chen, C. Wang, J. Zheng, L. Fan, B. Zhu, Samarium doped ceria–(Li/Na)2CO3 composite electrolyte and its electrochemical properties in low temperature solid oxide fuel cell, J. Power Sources 195 (2010) 4695-4699.

DOI: 10.1016/j.jpowsour.2010.02.066

Google Scholar

[21] Y. -C. Hou, M. -W. Ding, S. -K. Liu, S. -K. Wu, Y. -C. Lin, Ni-substituted LaMnO3 perovskites for ethanol oxidation. RSC Adv. 4 (2014) 5329-5338.

DOI: 10.1039/c3ra46323k

Google Scholar

[22] C. Sameera Devi, G.S. Kumar, G. Prasad, Spectroscopic and electrical studies on nd3+, zr4+ ions doped nano-sized batio3 ferroelectrics prepared by sol–gel method. Spectrochim. Acta, Part A, 136 (2015) 366-372.

DOI: 10.1016/j.saa.2014.09.042

Google Scholar

[23] C.O. Augustin, L.J. Berchmans, R. Kalai Selvan, Structural, electrical and electrochemical properties of co-precipitated SrFeO3−δ. Mater. Lett. 58 (2004) 1260-1266.

DOI: 10.1016/j.matlet.2003.09.018

Google Scholar

[24] H.T. Handal, A. Hassan, R. Leeson, S.M. Eloui, M. Fritxpatrick, V. Thangadurai, Profound understanding of effect of transition metal dopant, sintering temperature, and pO2 on the electrical and optical properties of proton conducting BaCe0. 9Sm0. 1O3−δ. Inorg. Chem., 55 (2016).

DOI: 10.1021/acs.inorgchem.5b02171

Google Scholar

[25] Y. Tao, J. Shao, J. Wang, W. G. Wang, Morphology control of Ce0. 9Gd0. 1O1. 95 nanopowder synthesized by sol–gel method using PVP as a surfactant, J. Alloys Compd. 484 (2009) 729-733.

DOI: 10.1016/j.jallcom.2009.05.027

Google Scholar

[26] O. N. Shebanova, P. Lazer, Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum, J. Solid State Chem. 174 (2003) 424-430.

DOI: 10.1016/s0022-4596(03)00294-9

Google Scholar

[27] M. Guo, J. Lu, Y. Wu, Y. Wang, M. Luo, UV and Visible Raman Studies of Oxygen Vacancies in Rare-Earth-Doped Ceria, Langmuir, 27 (2011) 3872-77.

DOI: 10.1021/la200292f

Google Scholar

[28] M. James, K.S. Wallwork, R.L. Withers, D.J. Goossens, K. F. Wilson, J. Horvat, X. L. Wang, M. Colella, Structure and magnetism in the oxygen-deficient perovskites Ce1−xSrxCoO3−δ (x ≥ 0. 90). Mater. Res. Bull., 40 (2005) 1415-1431.

DOI: 10.1016/j.materresbull.2005.03.025

Google Scholar

[29] A.V. Korotcov, Y. -S. Huang, K. -K. Tiong, D. -S. Tsai. Raman scattering characterization of well-aligned RuO2 and IrO2 nanocrystals J. Raman Spectrosc. 38 (2007) 737-749.

DOI: 10.1002/jrs.1655

Google Scholar

[30] M. de los Reyes, K. R. Whittle, Z. Zhang, S. E. Ashbrook, M. R. Mitchell, L. -Y. Jang, G. R. Lumpkin, The pyrochlore to defect fluorite phase transition in Y2Sn2-xZrxO7 RSC Advances 3 (2013) 5090-99.

DOI: 10.1039/c3ra22704a

Google Scholar

[31] Z. Wu, M. Li, J. Howe, H. M. Meyer, S. H. Overbury. Probing Defect Sites on CeO2 Nanocrystals with Well-Defined Surface Planes by Raman Spectroscopy and O2 Adsorption, Langmuir, 26 (2010) 16595-16606.

DOI: 10.1021/la101723w

Google Scholar

[32] E.J. Baran, Structural chemistry and physicochemical properties of perovskite-like materials. Catal. Today, (8) 1990 133-151.

DOI: 10.1016/0920-5861(90)87015-u

Google Scholar

[33] C.D. Chandler, C. Roger, M.J. Hampden-Smith, Chemical aspects of solution routes to perovskite-phase mixed-metal oxides from metal-organic precursors. Chem. Rev., 93 (1993) 1205-1241.

DOI: 10.1021/cr00019a015

Google Scholar

[34] A.M. Cruz, L. Abad, N.M. Carretero, J. Moral-Vico, J. Fraxedas, P. Lozano, G. Subías, V. Padial, M. Carballo, J. E. Collazos-Castro, N. Casañ-Pastor, Iridium oxohydroxide, a significant member in the family of iridium oxides. Stoichiometry, characterization, and implications in bioelectrodes. J. Phys. Chem. C, 116 (2012).

DOI: 10.1021/jp212275q

Google Scholar

[35] R. Hufschmid, H. Arami, R.M. Ferguson, M. Gonzales, E. Teeman, L. N. Brush, N. D. Browning, K. M. Krishnan, Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale, 7 (2015) 11142-11154.

DOI: 10.1039/c5nr01651g

Google Scholar

[36] W. Yang, T. Hong, S. Li, Z. Ma, C. Sun, C. Xia, L. Chen, Perovskite Sr1–xCexCoO3−δ (0. 05 ≤ x ≤ 0. 15) as superior cathodes for intermediate temperature solid oxide fuel cells. ACS Appl. Mater. Interfaces, 5 (2013) 1143-1148.

DOI: 10.1021/am3029238

Google Scholar

[37] J. Ryu, R. O'Hayre, H. Lee, Structural analysis and electrochemical properties of cobalt-doped Sr0. 9Ce0. 1MnO3−δ cathode for IT-SOFCs. J. Mater. Res., 29 (2014) 2667-2672.

DOI: 10.1557/jmr.2014.306

Google Scholar

[38] A. Botea-Petcu, S. Tanasescu, V. Varazashvili, N. Lejava, T. Machaladze, M. Khundadze, F. Maxim, F. Teodorescu, J. Martynczuk, Z. Yáng, L. J. Gauckler, Thermodynamic data of Ba0. 6Sr0. 4Co0. 8Fe0. 2O3−δ SOFC cathode material. Mater. Res. Bull., 57 (2014).

DOI: 10.1016/j.materresbull.2014.06.002

Google Scholar

[39] R. Mueller, H.K. Kammler, K. Wegner, S.E. Pratsinis, OH surface density of SiO2 and TiO2 by thermogravimetric analysis. Langmuir, 19 (2003) 160-165.

DOI: 10.1021/la025785w

Google Scholar

[40] J. Hanna, W.Y. Lee, Y. Shi, and A.F. Ghoniem, Fundamentals of electro- and thermochemistry in the anode of solid-oxide fuel cells with hydrocarbon and syngas fuels. Prog. Energy Combust. Sci., 40 (2014) 74-111.

DOI: 10.1016/j.pecs.2013.10.001

Google Scholar

[41] D.P. Rupasov, A.V. Berenov, J.A. Kilner, S.Y. Istomin, E. V. Antipov, Oxygen diffusion in Sr0. 75Y0. 25CoO2. 62. Solid State Ionics, 197 (2011) 18-24.

DOI: 10.1016/j.ssi.2011.06.016

Google Scholar

[42] I. Park, J. Choi, H. Lee, and D. Shin, Optimization of Sm0. 5Sr0. 5CoO3−δ–Sm0. 2Ce0. 8O2−δ composite cathodes fabricated by electrostatic slurry spray deposition. Ceram. Int., 39 (2013) 5561-5569.

DOI: 10.1016/j.ceramint.2012.12.070

Google Scholar

[43] D. Chen, C. Chen, Z.M. Baiyee, Z. Shao, F. Ciucci, Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chem. Rev., 115 (2015) 9869-9921.

DOI: 10.1021/acs.chemrev.5b00073

Google Scholar