[1]
Coutts, T.J., An overview of thermophotovoltaic generation of electricity. Solar energy materials and solar cells, 2001. 66(1): pp.443-452.
DOI: 10.1016/s0927-0248(00)00206-3
Google Scholar
[2]
Yang, Y., J. -Y. Chang, and L. Wang, Performance Analysis of a Near-Field Thermophotovoltaic Device with a Metallodielectric Selective Emitter and Electrical Contacts for the Photovoltaic Cell. arXiv preprint arXiv: 1509. 06752, (2015).
DOI: 10.1115/1.4034839
Google Scholar
[3]
Rhodes, C., et al., Dependence of plasmon polaritons on the thickness of indium tin oxide thin films. Journal of Applied Physics, 2008. 103(9): p.093108.
DOI: 10.1063/1.2908862
Google Scholar
[4]
West, P.R., et al., Searching for better plasmonic materials. Laser & Photonics Reviews, 2010. 4(6): pp.795-808.
Google Scholar
[5]
Solieman, A. and M.A. Aegerter, Modeling of optical and electrical properties of In2O3: Sn coatings made by various techniques. Thin Solid Films, 2006. 502(1): pp.205-211.
DOI: 10.1016/j.tsf.2005.07.277
Google Scholar
[6]
Smith, G.B., et al. Tuning plasma frequency for improved solar control glazing using mesoporous nanostructures. in Photonics Europe. 2006. International Society for Optics and Photonics.
DOI: 10.1117/12.661198
Google Scholar
[7]
Ilic, O., et al., Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems. Optics express, 2012. 20(103): p. A366-A384.
DOI: 10.1364/oe.20.00a366
Google Scholar
[8]
Chang, J. -Y., S. Basu, and L. Wang, Indium tin oxide nanowires as hyperbolic metamaterials for near-field radiative heat transfer. Journal of Applied Physics, 2015. 117(5): p.054309.
DOI: 10.1063/1.4907581
Google Scholar
[9]
Boriskina, S.V., et al. Enhancement and Tunability of Near-Field Radiative Heat Transfer Mediated by Surface Plasmon Polaritons in Thin Plasmonic Films. in Photonics. 2015. Multidisciplinary Digital Publishing Institute.
DOI: 10.3390/photonics2020659
Google Scholar
[10]
Narayanaswamy, A. and G. Chen, Thermal emission control with one-dimensional metallodielectric photonic crystals. Physical Review B, 2004. 70(12): p.125101.
DOI: 10.1103/physrevb.70.125101
Google Scholar
[11]
Joulain, K., et al., Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field. Surface Science Reports, 2005. 57(3): pp.59-112.
DOI: 10.1016/j.surfrep.2004.12.002
Google Scholar
[12]
Raether, H., Surface plasmons on smooth surfaces. 1988: Springer.
Google Scholar
[13]
Maier, S.A., Plasmonics: fundamentals and applications. 2007: Springer Science & Business Media.
Google Scholar
[14]
Chang, J. -Y., Y. Yang, and L. Wang, Extraordinary Photon Transport by Near-Field Coupling of a Nanostructured Metamaterial with a Graphene-Covered Plate. arXiv preprint arXiv: 1509. 05399, (2015).
Google Scholar
[15]
Francoeur, M., Near-field radiative transfer: Thermal radiation, thermophotovoltaic power generation and optical characterization. University of Kentucky Doctoral Dissertations. Paper 58., (2010).
Google Scholar
[16]
Bordo, V.G. and H. -G. Rubahn, Optics and spectroscopy at surfaces and interfaces. 2008: John Wiley & Sons.
Google Scholar
[17]
Francoeur, M., M.P. Mengüç, and R. Vaillon, Local density of electromagnetic states within a nanometric gap formed between two thin films supporting surface phonon polaritons. Journal of Applied Physics, 2010. 107(3): p.034313.
DOI: 10.1063/1.3294606
Google Scholar
[18]
Biehs, S. -A., D. Reddig, and M. Holthaus, Thermal radiation and near-field energy density of thin metallic films. The European Physical Journal B-Condensed Matter and Complex Systems, 2007. 55(3): pp.237-251.
DOI: 10.1140/epjb/e2007-00053-3
Google Scholar
[19]
Francoeur, M., M.P. Mengüç, and R. Vaillon, Spectral tuning of near-field radiative heat flux between two thin silicon carbide films. Journal of Physics D: Applied Physics, 2010. 43(7): p.075501.
DOI: 10.1088/0022-3727/43/7/075501
Google Scholar
[20]
Francoeur, M., M.P. Mengüç, and R. Vaillon, Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green's functions and the scattering matrix method. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009. 110(18): p.2002-(2018).
DOI: 10.1016/j.jqsrt.2009.05.010
Google Scholar
[21]
Francoeur, M., R. Vaillon, and M.P. Mengüç, Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators. Energy Conversion, IEEE Transactions on, 2011. 26(2): pp.686-698.
DOI: 10.1109/tec.2011.2118212
Google Scholar
[22]
Vaillon, R., et al., Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell. International journal of heat and mass transfer, 2006. 49(23): pp.4454-4468.
DOI: 10.1016/j.ijheatmasstransfer.2006.05.014
Google Scholar
[23]
Patankar, S., Numerical heat transfer and fluid flow. 1980: CRC Press.
Google Scholar
[24]
Palik, E.D., Handbook of optical constants of solids. Vol. 3. 1998: Academic press.
Google Scholar
[25]
Ordal, M.A., et al., Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Applied optics, 1985. 24(24): pp.4493-4499.
DOI: 10.1364/ao.24.004493
Google Scholar
[26]
Adachi, S., Model dielectric constants of GaP, GaAs, GaSb, InP, InAs, and InSb. Physical review B, 1987. 35(14): p.7454.
DOI: 10.1103/physrevb.35.7454
Google Scholar
[27]
González-Cuevas, J.A., et al., Modeling of the temperature-dependent spectral response of In1− χGaχSb infrared photodetectors. Optical Engineering, 2006. 45(4): pp.044001-8.
Google Scholar
[28]
Yeh, P., Optical waves in layered media. Vol. 95. 1988: Wiley New York.
Google Scholar
[29]
Park, K., et al., Performance analysis of near-field thermophotovoltaic devices considering absorption distribution. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008. 109(2): pp.305-316.
DOI: 10.1016/j.jqsrt.2007.08.022
Google Scholar
[30]
Lau, J.Z. -J., V.N. -S. Bong, and B.T. Wong, Parametric investigation of nano-gap thermophotovoltaic energy conversion. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016. 171: pp.39-49.
DOI: 10.1016/j.jqsrt.2015.11.023
Google Scholar