Optimum Annealing Temperature for Transformation of NiO Nanoflakes from Chemically Grown Ni(OH)2 Nanostructure Thin Film

Article Preview

Abstract:

Nickel oxide nanoflakes have been synthesized by chemical bath deposition. The films have been deposited on ITO/glass substrate and anneal at different temperature in furnace. Surface morphology, structural and optical properties of the nanoflakes films were examined and analysed. FESEM result shows that the NiO/Ni(OH)2 film shown an increase in the thin film roughness with temperature. The film was formed with the growth of porous net-like structure that was made up of interconnected nanoflakes’ wall with a thickness of 25–45 nm for the as-grown and annealed thin film samples. The atomic ratio and weight of sample treated at 250 °C approaches the stoichiometric value. XRD analysis demonstrated that the NiO nanoflakes consist of a rhombohedral structure with orientation peak of (110), (202) and (211). This appears with more stronger intensity at 250 °C. Likewise the PL and XRD result confirms the absence of Ni(OH)2 at 250 and 350 °C of annealing temperature. From the results analysis of this work the optimum temperature for synthesizing high stoichiometric and crystalline quality of NiO nanoflakes was consider to be at 250 °C from the characterisation result analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-84

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Sattarahmady, H. Heli, and R. D. Vais, An electrochemical acetylcholine sensor based on lichen-like nickel oxide nanostructure, Biosens. Bioelectron., vol. 48, p.197–202, (2013).

DOI: 10.1016/j.bios.2013.04.001

Google Scholar

[2] H. Pang, Q. Lu, Y. Zhang, Y. Li, and F. Gao, Selective synthesis of nickel oxide nanowires and length effect on their electrochemical properties, Nanoscale, vol. 2, no. 6, p.920, (2010).

DOI: 10.1039/c0nr00027b

Google Scholar

[3] S. Pereira, A. Gonçalves, N. Correia, J. Pinto, L. Pereira, R. Martins, and E. Fortunato, Electrochromic behavior of NiO thin films deposited by e-beam evaporation at room temperature, Sol. Energy Mater. Sol. Cells, vol. 120, p.109–115, (2014).

DOI: 10.1016/j.solmat.2013.08.024

Google Scholar

[4] Z. H. Ibupoto, K. Khun, and M. Willander, Development of a pH Sensor Using Nanoporous Nanostructures of NiO, J. Nanosci. Nanotechnol., vol. 14, no. 9, p.6699–6703, (2014).

DOI: 10.1166/jnn.2014.9373

Google Scholar

[5] F. I. Dar, K. R. Moonoosawmy, and M. Es-Souni, Morphology and property control of NiO nanostructures for supercapacitor applications., Nanoscale Res. Lett., vol. 8, no. 1, p.363, (2013).

DOI: 10.1186/1556-276x-8-363

Google Scholar

[6] L. Watkins, Development of non-noble catalysts for hydrogen and oxygen evolution in alkaline polymer electrolyte membrane electrolysis, Newcastle University, (2013).

Google Scholar

[7] S. Sriram and A. Thayumanavan, Structural, Optical and Electrical Properties of NiO Thin Films Prepared by Low Cost Spray Pyrolysis Technique, Int. J. Mater. Sci. Eng., vol. 1, no. 2, p.118–121, (2014).

DOI: 10.12720/ijmse.1.2.118-121

Google Scholar

[8] D. S. Dalavi, M. J. Suryavanshi, D. S. Patil, S. S. Mali, a. V. Moholkar, S. S. Kalagi, S. a. Vanalkar, S. R. Kang, J. H. Kim, and P. S. Patil, Nanoporous nickel oxide thin films and its improved electrochromic performance: Effect of thickness, Appl. Surf. Sci., vol. 257, no. 7, p.2647–2656, (2011).

DOI: 10.1016/j.apsusc.2010.10.037

Google Scholar

[9] B. D. L. García-gonzález and R. Aparicio, Sensors : From Biosensors to the Electronic Nose, vol. 53, p.96–114, (2002).

Google Scholar

[10] K. Zhang, C. Rossi, P. Alphonse, and C. Tenailleau, Synthesis of NiO nanowalls by thermal treatment of Ni film deposited onto a stainless steel substrate, Nanotechnology, vol. 19, no. 15, p.155605, (2008).

DOI: 10.1088/0957-4484/19/15/155605

Google Scholar

[11] G. Bodurov, T. Ivanova, and K. Gesheva, Technology and Application of Transition Metal Oxide of W-V-O as Functional Layers and NiO Thin Films as Counter Electrode Material in Electrochromic 'Smart Windows, ', Phys. Procedia, vol. 46, no. Eurocvd 19, p.149–158, (2013).

DOI: 10.1016/j.phpro.2013.07.057

Google Scholar

[12] J. Soon, M. Krunks, and V. Mikli, Properties of Nio Thin Films Prepared By Chemical Spray Pyrolysis, vol. 24, no. 4, p.510–518, (2013).

Google Scholar

[13] L. Li, K. S. Hui, K. N. Hui, H. W. Park, D. H. Hwang, S. Cho, S. K. Lee, P. K. Song, Y. R. Cho, H. Lee, Y. G. Son, and W. Zhou, Synthesis and characterization of NiO-doped p-type AZO films fabricated by sol–gel method, Mater. Lett., vol. 68, p.283–286, (2012).

DOI: 10.1016/j.matlet.2011.10.089

Google Scholar

[14] Y. Lin, T. Xie, B. Cheng, B. Geng, and L. Zhang, Ordered nickel oxide nanowire arrays and their optical absorption properties, Chem. Phys. Lett., vol. 380, no. 5–6, p.521–525, (2003).

DOI: 10.1016/j.cplett.2003.09.066

Google Scholar

[15] C. Li and S. Liu, Preparation and Characterization of Ni(OH)2 and NiO Mesoporous Nanosheets, J. Nanomater., vol. 2012, p.1–6, (2012).

Google Scholar

[16] W. L. Jang, Y. M. Lu, W. S. Hwang, C. L. Dong, P. H. Hsieh, C. L. Chen, T. S. Chan, and J. F. Lee, A study of thermal decomposition of sputtered NiO films, EPL (Europhysics Lett., vol. 96, no. 3, p.37009, (2011).

DOI: 10.1209/0295-5075/96/37009

Google Scholar

[17] S. -Y. Park, H. -R. Kim, Y. -J. Kang, D. -H. Kim, and J. -W. Kang, Organic solar cells employing magnetron sputtered p-type nickel oxide thin film as the anode buffer layer, Sol. Energy Mater. Sol. Cells, vol. 94, no. 12, p.2332–2336, (2010).

DOI: 10.1016/j.solmat.2010.08.004

Google Scholar

[18] S. F. Oboudi, N. F. Habubi, G. H. Mohamed, and S. S. Chiad, Composition and Optical Dispersion Characterization of Nanoparticles ZnO-NiO Thin Films : Effect of Annealing Temperature, vol. 8, no. 1, p.78–86, (2013).

DOI: 10.56431/p-3o6piq

Google Scholar

[19] X. Xia, J. Tu, X. Wang, C. Gu, and X. Zhao, Hierarchically porous NiO film grown by chemical bath depositionvia a colloidal crystal template as an electrochemical pseudocapacitor material, J. Mater. Chem., vol. 21, no. 3, p.671–679, (2011).

DOI: 10.1039/c0jm02784g

Google Scholar

[20] S. Mahanty, D. Basak, F. Rueda, and M. Leon, Optical properties of chemical bath deposited CdS thin films, J. Electron. Mater., vol. 28, no. 6, p.559–562, (1999).

DOI: 10.1007/s11664-999-0112-0

Google Scholar

[21] M. E. G. Lyons, A. Cakara, P. O'Brien, I. Godwin, and R. L. Doyle, Redox, pH sensing and electrolytic water splitting properties of electrochemically generated nickel hydroxide thin films in aqueous alkaline solution, Int. J. Electrochem. Sci., vol. 7, p.11768–11795, (2012).

DOI: 10.1016/s1452-3981(23)16503-5

Google Scholar

[22] M. Vidaleshurtado and a Mendozagalvan, Electrochromism in nickel oxide-based thin films obtained by chemical bath deposition, Solid State Ionics, vol. 179, no. 35–36, p.2065–2068, (2008).

DOI: 10.1016/j.ssi.2008.07.003

Google Scholar

[23] a. I. Inamdar, Y. Kim, S. M. Pawar, J. H. Kim, H. Im, and H. Kim, Chemically grown, porous, nickel oxide thin-film for electrochemical supercapacitors, J. Power Sources, vol. 196, no. 4, p.2393–2397, (2011).

DOI: 10.1016/j.jpowsour.2010.09.052

Google Scholar

[24] T. H. Gfroerer, Photoluminescence in Analysis of Surfaces and Interfaces, Encycl. Anal. Chem., p.9209–9231, (2000).

Google Scholar

[25] J. Gangwar, K. K. Dey, S. K. Tripathi, M. Wan, R. R. Yadav, R. K. Singh, Samta, and A. K. Srivastava, NiO-based nanostructures with efficient optical and electrochemical properties for high-performance nanofluids., Nanotechnology, vol. 24, no. 41, p.415705, (2013).

DOI: 10.1088/0957-4484/24/41/415705

Google Scholar

[26] L. Marchetti, S. Perrin, Y. Wouters, F. Martin, and M. Pijolat, Photoelectrochemical study of nickel base alloys oxide films formed at high temperature and high pressure water, Electrochim. Acta, vol. 55, no. 19, p.5384–5392, (2010).

DOI: 10.1016/j.electacta.2010.04.063

Google Scholar