Structural, Electrical and Optical Properties of NiO Nanostructured Growth Using Thermal Wet Oxidation of Nickel Metal Thin Film

Article Preview

Abstract:

The synthetic NiO nanostructures have been grown using thermal wet oxidation of metallic Ni thin films on ITO/glass by RF sputtering. The deposited Nickel thin films layer were oxidized in stream atmosphere at varying temperatures range of 400 °C to 700 °C inside furnace. Structural, surface morphology, electrical and the optical properties of NiO nanostructure were analysed by X-ray diffraction (XRD), Field effect scanning electron microscope (FESEM), energy dispersive X-ray (EDX), hall effects measurements and UV-Visible spectroscope measurements. XRD analysis proves that the NiO nanostructure has a cubic structure with orientation of the most intense peak at (200), and the film prepared 600 °C shows a better crystalline quality. FESEM and AFM results also prove that by increasing the oxidation temperature, the dimensions and roughness of the NiO nanoparticle thin layer increases. Also the oxidation rate appears higher. The optimum temperature for synthesizing high quality NiO with great stoichiometric and crystalline property was determined to be at 600 of wet oxidation. EDX results reveals only O and Ni present in the treated samples, indicating a pure NiO composition obtained. From UV-Vis absorption spectroscope of Tauc’s relationship, the bang gap was observed to increase with temperature at range of 3.29 – 4.09 eV. The effect of annealing was highlighted on the tunability of electrical property Ni thin films with both n-type and p-type behavior NiO as determine from hall measurement. The observed tunability of NiO thin film will ease way toward p-n homojunction realization for optoelectronic device applications of short wave length that involves photodetectors and LEDs

You might also be interested in these eBooks

Info:

Periodical:

Pages:

56-65

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Mu, D. Jia, Y. He, Y. Miao, and H. Wu, Biosensors and Bioelectronics Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential, Biosens. Bioelectron., vol. 26, no. 6, p.2948–2952, (2011).

DOI: 10.1016/j.bios.2010.11.042

Google Scholar

[2] M. D. Irwin, J. D. Servaites, D. B. Buchholz, B. J. Leever, J. Liu, J. D. Emery, M. Zhang, J. H. Song, M. F. Durstock, A. J. Freeman, M. J. Bedzyk, M. C. Hersam, R. P. H. Chang, M. a. Ratner, and T. J. Marks, Structural and electrical functionality of NiO interfacial films in bulk heterojunction organic solar cells, Chem. Mater., vol. 23, p.2218–2226, (2011).

DOI: 10.1021/cm200229e

Google Scholar

[3] S. Y. Tsai, M. H. Hon, and Y. M. Lu, Fabrication of transparent p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors, Solid. State. Electron., vol. 63, no. 1, p.37–41, (2011).

DOI: 10.1016/j.sse.2011.04.019

Google Scholar

[4] I. Fasaki, a. Koutoulaki, M. Kompitsas, and C. Charitidis, Structural, electrical and mechanical properties of NiO thin films grown by pulsed laser deposition, Appl. Surf. Sci., vol. 257, no. 2, p.429–433, (2010).

DOI: 10.1016/j.apsusc.2010.07.006

Google Scholar

[5] T. Y. Kim, S. H. Lee, Y. H. Mo, K. S. Nahm, J. Y. Kim, E. -K. Suh, and M. Kim, Growth mechanism of needle-shaped ZnO nanostructures over NiO-coated Si substrates, Korean J. Chem. Eng., vol. 23, no. 6, p.1068–1068, (2006).

DOI: 10.1007/s11814-006-0037-8

Google Scholar

[6] L. De Los Santos Valladares, A. Ionescu, S. Holmes, C. H. W. Barnes, A. Bustamante Domínguez, O. Avalos Quispe, J. C. González, S. Milana, M. Barbone, A. C. Ferrari, H. Ramos, and Y. Majima, Characterization of Ni thin films following thermal oxidation in air, J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom., vol. 32, no. 5, p.51808, (2014).

DOI: 10.1116/1.4895846

Google Scholar

[7] F. Science, Properties of NiO Thin Films Prepared by Chemical Spray Pyrolysis Using NiSO4 and NiCl2 Precursor Solutions, vol. I, p.3500, (2008).

Google Scholar

[8] J. Šauta Ogorevc, C. Parameswaran, R. P, and V. V, Comparison Of Wet And Dry Oxidation Of Silicon Dioxide Engineering Essay, V.I. T University, 2015. [Online]. Available: www. uniassignment. com/essay-samples/engineering/comparison-of-wet-and-dry-oxidation-of-silicon-dioxide-%0Aengineering-essay. php.

Google Scholar

[9] K. Zhang, C. Rossi, P. Alphonse, and C. Tenailleau, Synthesis of NiO nanowalls by thermal treatment of Ni film deposited onto a stainless steel substrate, Nanotechnology, vol. 19, no. 15, p.155605, (2008).

DOI: 10.1088/0957-4484/19/15/155605

Google Scholar

[10] I. Dhanya and B. Sasi, A Study on the Thermodynamics of Grain Growth in R.F. Magnetron Sputtered NiO Thin Films, J. Coatings, vol. 2013, p.1–6, (2013).

DOI: 10.1155/2013/981515

Google Scholar

[11] P. Mohanty, C. Rath, P. Mallick, R. Biswal, and N. C. Mishra, UV-visible studies of nickel oxide thin film grown by thermal oxidation of nickel, Phys. B Condens. Matter, vol. 405, no. 12, p.2711–2714, (2010).

DOI: 10.1016/j.physb.2010.03.064

Google Scholar

[12] J. Jiang, X. Wang, Q. Zhang, J. Li, and X. X. Zhang, Thermal oxidation of Ni films for p-type thin-film transistors, Phys. Chem. Chem. Phys. Phys. Chem. Chem. Phys, vol. 15, no. 15, p.6875–6878, (2013).

DOI: 10.1039/c3cp50197c

Google Scholar

[13] C. C. Forin, M. Purica, E. Budianu, and P. Schiopu, p-NiO / ITO transparent heterojunction – preparation and characterization, in Semiconductor Conference (CAS), 2012 International, 2012, p.131–134.

DOI: 10.1109/smicnd.2012.6400676

Google Scholar

[14] G. Dom, Nanostructured Nickel Oxide thin films grown by Reactive RF Magnetron Sputtering, Universidad aut´ onoma de madrid, (2014).

Google Scholar

[15] M. Purica, E. Budianu, M. Danila, F. Comanescu, and R. Gavrila, Structural and optical properties of NiO thin films prepared by metallic Ni thermal oxidation, J. Korean Phys. Soc., vol. 63, no. 6, p.1199–1202, (2013).

Google Scholar

[16] W. L. Jang, Y. M. Lu, W. S. Hwang, C. L. Dong, P. H. Hsieh, C. L. Chen, T. S. Chan, and J. F. Lee, A study of thermal decomposition of sputtered NiO films, EPL (Europhysics Lett., vol. 96, no. 3, p.37009, (2011).

DOI: 10.1209/0295-5075/96/37009

Google Scholar

[17] A. Venter and J. R. Botha, Optical and electrical properties of NiO for possible dielectric applications, S. Afr. J. Sci., vol. 107, no. 1/2, p.1–6, (2011).

DOI: 10.4102/sajs.v107i1/2.268

Google Scholar