Controlled Synthesis of Novel Popcorn-Like CeO2 Nanostructures and their Magnetic Properties

Article Preview

Abstract:

The monodisperse popcorn-like CeO2 nanostructures with crude surface covered by wrinkles completely and a diameter of 150-300 nm have been successfully synthesized by a facile hydrothermal technology. XRD, SEM, XPS, Raman scattering and M-H curve were employed to characterize the samples. The results showed that the popcorn-like CeO2 nanostructures have a cubic fluorite structure and there are Ce3+ ions and oxygen vacancies existing in their surface. The magnetic measurement indicated that the popcorn-like CeO2 nanostructures possess excellent ferromagnetism at room temperature, which can be attributed to the influences of the morphology of the particles, Ce3+ ions and oxygen vacancies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-33

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.T. Campbell, C.H. Peden, Oxygen vacancies and catalysis on ceria surfaces, Science 309 (2005) 713-714.

DOI: 10.1126/science.1113955

Google Scholar

[2] D. Andreeva, I. Ivanov, L. Ilieva, J.W. Sobczak, G. Avdeev, T. Tabakova, Nanosized gold catalysts supported on ceria and ceria-alumina for WGS reaction: Influence of the preparation method, Appl. Catal. Gen. 333 (2007) 153-160.

DOI: 10.1016/j.apcata.2007.04.011

Google Scholar

[3] R.X. Li, S. Yabe, M. Yamashita, S. Momose, S. Yoshida, S. Yin, Synthesis and UV-shielding properties of ZnO- and CaO-doped CeO2 via soft solution chemical process, Solid State Ionics 151 (2002) 235-240.

DOI: 10.1016/s0167-2738(02)00715-4

Google Scholar

[4] Lima, R.F. Martins, C.R. Neri, O.A. Serra, ZnO: CeO2-based nanopowders with low catalytic activity as UV absorbers, Appl. Surf. Sci. 255 (2009) 9006-9009.

DOI: 10.1016/j.apsusc.2009.06.071

Google Scholar

[5] F. Goubin, X. Rocquefelte, M.H. Whangbo, Y. Montardi, R. Brec, S. Jobic, Experimental and theoretical characterization of the optical properties of CeO2, SrCeO3, and Sr2CeO4 Containing Ce4+ (f0) Ions, Chem. Mater. 16 (2004) 662-669.

DOI: 10.1002/chin.200417017

Google Scholar

[6] A. A. Ansari, S.P. Singh, B.D. Malhotra, Optical and structural properties of nanostructured CeO2: Tb3+ film, J. Alloy. Compd. 509 (2011) 262-265.

DOI: 10.1016/j.jallcom.2010.07.009

Google Scholar

[7] J. Li, Y. Hao, H. Li, M. Xia, X. Sun, L. Wang, Direct synthesis of CeO2 /SiO2 mesostructured composite materials via sol-gel process, Micropor. Mesopor. Mat. 120 (2009) 421-425.

DOI: 10.1016/j.micromeso.2008.12.014

Google Scholar

[8] C. Zhang, F. Meng, L. Wang, Controlled synthesis and magnetic properties of bowknot-like CeO2 microstructures by a CTAB-assisted hydrothermal method, Mater. Lett. 119 (2014) 1-3.

DOI: 10.1016/j.matlet.2013.12.087

Google Scholar

[9] A. Hadi, II. Yaacob, Novel synthesis of nanocrystalline CeO2 by mechanochemical and water-in-oil microemulsion methods, Mater. Lett. 61 (2007) 93-96.

DOI: 10.1016/j.matlet.2006.04.013

Google Scholar

[10] F.M. Meng, L.N. Wang, Hydrothermal synthesis of monocrystalline CeO2 nanopoles and their room temperature ferromagnetism, Mater. Lett. 100 (2013) 86-88.

DOI: 10.1016/j.matlet.2013.03.029

Google Scholar

[11] W. Gao, Z.Y. Zhang, J. Li, Y.Y. Ma, Y.Q. Qu, Surface engineering on CeO2 nanorods by chemical redox etching and their enhanced catalytic activity for CO oxidation, Nanoscale, 7 (2015) 11686-11691.

DOI: 10.1039/c5nr01846c

Google Scholar

[12] J.F. Gong, F.M. Meng, X. Yang, Z.H. Fan, H.J. Li, Controlled hydrothermal synthesis of triangular CeO2 nanosheets and their formation mechanism and optical properties, J. Alloy. Compd. 689 (2016) 606-616.

DOI: 10.1016/j.jallcom.2016.08.030

Google Scholar

[13] N.S. Ferreira, R.S. Angélica, V.B. Marques, C.C.O. de Lima, M.S. Silva, Cassava-starch-assisted sol-gel synthesis of CeO2 nanoparticles, Mater. Lett. 165 (2016) 139-142.

DOI: 10.1016/j.matlet.2015.11.107

Google Scholar

[14] B. Xu, Q.T. Zhang, S. S Yuan, M. Zhang, T. Ohno, Morphology control and characterization of broom-like porous CeO2, Chem. Eng. J. 260 (2015) 126-132.

DOI: 10.1016/j.cej.2014.09.001

Google Scholar

[15] F.L. Liang, Y. Yu, W. Zhou, X.Y. Xu, Z.H. Zhu, Highly defective CeO2 as a promoter for efficient and stable water oxidation, J. Mater. Chem. A 3 (2015) 634-640.

DOI: 10.1039/c4ta05770h

Google Scholar

[16] A. Younis, D. Chu, Y.V. Kaneti, S. Li, Tuning the surface oxygen concentration of {111} surrounded ceria nanocrystals for enhanced photocatalytic activities, Nanoscale 8 (2016) 378-387.

DOI: 10.1039/c5nr06588g

Google Scholar

[17] R.C. Deus, M. Cilense, C.R. Foschini, M.A. Ramirez, E. Longo, A.Z. Simões, Influence of mineralizer agents on the growth of crystalline CeO2 nanospheres by the microwave-hydrothermal method, J. Alloy. Compd. 550 (2013) 245-251.

DOI: 10.1016/j.jallcom.2012.10.001

Google Scholar

[18] A.C. Cabral, L.S. Cavalcante, R.C. Deus, E. Longo, A.Z. Simões, F. Moura, Photoluminescence properties of praseodymium doped cerium oxide nanocrystals, Ceram. Int. 40 (2014) 4445-4453.

DOI: 10.1016/j.ceramint.2013.08.117

Google Scholar

[19] X.D. Li, J.G. Li, D. Huo, Z.M. Xiu, X.D. Sun, Facile synthesis under near-atmospheric conditions and physicochemical properties of hairy CeO2 nanocrystallines, J. Phys. Chem. C 113 (2009) 1806-1811.

DOI: 10.1021/jp809703h

Google Scholar

[20] J. Zdravković, B. Simović, A. Golubović, D. Poleti, I. Veljković, M. Šćepanović, G. Branković, Comparative study of CeO2 nanopowders obtained by the hydrothermal method from various precursors, Ceram. Int. 41 (2015) 1970-(1979).

DOI: 10.1016/j.ceramint.2014.08.122

Google Scholar

[21] S.Y. Chen, Y.H. Lu, T.W. Huang, D.C. Yan, C.L. Dong, Oxygen vacancy dependent magnetism of CeO2 nanoparticles prepared by thermal decomposition method, J. Phys. Chem. C 114 (2010) 19576-19581.

DOI: 10.1021/jp1045172

Google Scholar

[22] J.H. Chen, Y.J. Lin, H.C. Chang, Y.H. Chen, L. Horng, C.C. Chang, Effect of Co content on magnetic and optical properties of Zn1−xCoxOy nanorods, J. Alloy Compd. 548 (2013) 235-238.

DOI: 10.1016/j.jallcom.2012.08.108

Google Scholar

[23] A. Thurber, K.M. Reddy, V. Shutthanandan, M.H. Engelhard, C. Wang, J. Hays, A. Punnoose, Ferromagnetism in chemically synthesized CeO2 nanoparticles by Ni doping, Phys. Rev. B 76 (2007) 165206.

DOI: 10.1103/physrevb.76.165206

Google Scholar

[24] A. Tiwari, V.M. Bhosle, S. Ramachandran, N. Sudhakar, J. Narayan, S. Budak, A. Gupta, Ferromagnetism in Co doped CeO2: Observation of a giant magnetic moment with a high curie temperature, Appl. Phys. Lett. 88 (2006) 142511.

DOI: 10.1063/1.2193431

Google Scholar

[25] P. Slusser, D. Kumar, A. Tiwari, Unexpected magnetic behavior of Cu-doped CeO2, Appl. Phys. Lett. 96 (2010) 142506.

DOI: 10.1063/1.3383238

Google Scholar

[26] S.Y. Chen, C.H. Tsai, M.Z. Huang, D.C. Yan, T.W. Huang, A. Gloter, C.L. Chen, H.J. Lin, C.T. Chen, C.L. Dong, Concentration dependence of oxygen vacancy on the magnetism of CeO2 nanoparticles, J. Phys. Chem. C 116 (2012) 8707-8713.

DOI: 10.1021/jp2065634

Google Scholar

[27] M.I.B. Bernardi, A. Mesquita, F. Beron, K.R. Pirota, A.O. d. Zevallos, A.C. Doriguetto, H.B. d. Carvalho, The role of oxygen vacancies and their location in the magnetic properties of Ce1−xCuxO2−δ nanorods, Phys. Chem. Chem. Phys. 17 (2015).

DOI: 10.1039/c4cp04879b

Google Scholar

[28] L.N. Wang, F.M. Meng, Oxygen vacancy and Ce3+ ion dependent magnetism of monocrystal CeO2 nanopoles synthesized by a facile hydrothermal method, Mater. Res. Bull. 48 (2013) 3492-3498.

DOI: 10.1016/j.materresbull.2013.05.036

Google Scholar

[29] J.F. Gong, F.M. Meng, Z.H. Fan, H.J. Li, Controlled synthesis of CeO2 microstructures from 1D rod-like to 3D lotus-like and their morphology-dependent properties, Electron. Mater. Lett. 12 (2016) 846-855.

DOI: 10.1007/s13391-016-6126-x

Google Scholar