Investigation of Ultrasonic Effect on Morphology, Optical and Growth Properties of ZnO Quantum Dots

Article Preview

Abstract:

Recent advances in nanomaterials have been led by new synthetic methods that provide control over size, morphology and crystal quality of materials. The present study is tried to discuss the effect of ultrasonic waves on characteristics of ZnO quantum dots by study of UV absorption, photoluminescence spectroscopy, X ray diffraction patterns, transmission electron microscopy and growth stages of two samples prepared by sonochemical and conventional methods. The results demonstrated that the quantum dots synthesized under ultrasonic waves were of smaller size with more narrow size distribution. Also, improvement of their crystal quality was inferred from investigation of visible emission intensity. The use of ultrasonic waves caused the phase purity of nanocrystals obtained by complete conversion of precursors into ZnO. Further, the study of their growth stages indicated that the rapid nucleation and nucleation growth were followed by Ostwald ripening process which improve the crystal properties. The better crystal quality of ultrasonic prepared ZnO indicated the enhancement of its applicability to be used for optoelectronic applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

10-17

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.T.D. Ty, N. Dannehl, D. Schlettwein, H. Yanagi, Hybrid Organic-Inorganic Solar Cells with Electrodeposited Al-Doped Zinc Oxide, J. Nanosci. Nanotechnol. 16 (2016) 3402-3406.

DOI: 10.1166/jnn.2016.12291

Google Scholar

[2] M. Belhaj, C. Dridi, H. Elhouichet, J.C. Valmalette , Study of ZnO nanoparticles based hybrid nanocomposites for optoelectronic applications, J. Appl. Phys. 119 (2016) 095501.

DOI: 10.1063/1.4942525

Google Scholar

[3] P. Büchele, M. Morana, D. Bagnis, S.F. Tedde, D. Hartmann, R. Fischer, O. Schmidt, Space charge region effects in bidirectional illuminated P3HT: PCBM bulk heterojunction photodetectors, Org. Electro. 22 (2015) 34-29.

DOI: 10.1016/j.orgel.2015.03.027

Google Scholar

[4] Y. -J. Pu, N. Morishita, T. Chiba, S. Ohisa, M. Igarashi, A. Masuhara, J. Kido, Efficient Electron Injection by Size-and Shape-Controlled Zinc Oxide Nanoparticles in Organic Light-Emitting Devices, ACS appl. mater. interfaces 7 (2015) 25373-25377.

DOI: 10.1021/acsami.5b07742

Google Scholar

[5] A. Kaushik, R. Kumar, S.K. Arya, M. Nair, B. Malhotra, S. Bhansali, Organic-inorganic hybrid nanocomposite-based gas sensors for environmental monitoring, Chem. rev. 115 (2015) 4571-4606.

DOI: 10.1021/cr400659h

Google Scholar

[6] T. Dixit, A. Bilgaiyan, I. Palani, D. Nakamura, T. Okada, V. Singh, Influence of potassium permanganate on the anisotropic growth and enhanced UV emission of ZnO nanostructures using hydrothermal process for optoelectronic applications, J. Sol-Gel Sci. Technol. 75 (2015).

DOI: 10.1007/s10971-015-3741-1

Google Scholar

[7] S. Ameen, M.S. Akhtar, H. -K. Seo, M.K. Nazeeruddin, H. -S. Shin, An insight into atmospheric plasma jet modified ZnO quantum dots thin film for flexible perovskite solar cell: optoelectronic transient and charge trapping studies, J. Phys. Chem. C, 119 (2015).

DOI: 10.1021/acs.jpcc.5b00933

Google Scholar

[8] J. -J. Wang, Y. -Q. Wang, F. -F. Cao, Y. -G. Guo, L. -J. Wan, Synthesis of monodispersed wurtzite structure CuInSe 2 nanocrystals and their application in high-performance organic− inorganic hybrid photodetectors, J. Am. Chem. Soc. 132 (2010).

DOI: 10.1021/ja1057955

Google Scholar

[9] R. Liu, Hybrid organic/inorganic nanocomposites for photovoltaic cells, Materials, 7 (2014) 2747-2771.

Google Scholar

[10] A. B Djurisic, X. Y Chen, Y. H Leung, Recent progress in hydrothermal synthesis of zinc oxide nanomaterials, Recent pat. nanotechnol. 6 (2012) 124-134.

DOI: 10.2174/187221012800270180

Google Scholar

[11] M. Zobel, H. Chatterjee, G. Matveeva, U. Kolb, R.B. Neder, Room-temperature sol-gel synthesis of organic ligand-capped ZnO nanoparticles, J. Nanoparticle Res. 17 (2015) 1-11.

DOI: 10.1007/s11051-015-3006-5

Google Scholar

[12] B.L. Caetano, C.V. Santilli, F. Meneau, V. Briois, S.H. Pulcinelli, In Situ and Simultaneous UV− vis/SAXS and UV− vis/XAFS Time-Resolved Monitoring of ZnO Quantum Dots Formation and Growth, J. Phys. Chem. C 115 (2011) 4404-4412.

DOI: 10.1021/jp109585t

Google Scholar

[13] B.L. Caetano, C.V. Santilli, S.H. Pulcinelli, V. Briois, SAXS and UV-Vis combined to QuickXAFS monitoring of ZnO nanoparticles formation and growth, Phase Transitions, 84 (2011) 714725.

DOI: 10.1080/01411594.2011.569318

Google Scholar

[14] J. Geng, L. Jiang, J. Zhu, Crystal formation and growth mechanism of inorganic nanomaterials in sonochemical syntheses, Sci. China Chem. 55 (2012) 2292-2310.

DOI: 10.1007/s11426-012-4732-5

Google Scholar

[15] J.H. Bang, K.S. Suslick, Applications of ultrasound to the synthesis of nanostructured materials, Adv. Mater. 22 (2010) 1039-1059.

DOI: 10.1002/adma.200904093

Google Scholar

[16] G. Cravotto, P. Cintas, Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications, Chem. Soc. Rev. 35 (2006) 180-196.

DOI: 10.1039/b503848k

Google Scholar

[17] W. Yang, H. Yang, W. Ding, B. Zhang, L. Zhang, L. Wang, M. Yu, Q. Zhang, High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method, Ultrason. sonochem. 33 (2016) 106-117.

DOI: 10.1016/j.ultsonch.2016.04.020

Google Scholar

[18] E. Moghaddam, A. Youzbashi, A. Kazemzadeh, M. Eshraghi, Preparation of surface-modified ZnO quantum dots through an ultrasound assisted sol-gel process, Appl. Surf. Sci. 346 (2015) 111114.

DOI: 10.1016/j.apsusc.2015.03.207

Google Scholar

[19] S. Repp, E. Erdem , Controlling the exciton energy of zinc oxide (ZnO) quantum dots by changing the confinement conditions, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 152 (2016) 637-644.

DOI: 10.1016/j.saa.2015.01.110

Google Scholar

[20] L. Zhang, L. Yin, C. Wang, N. Lun, Y. Qi, D. Xiang, Origin of visible photoluminescence of ZnO quantum dots: defect-dependent and size-dependent, J. Phys. Chem. C, (2010) 9651-9658.

DOI: 10.1021/jp101324a

Google Scholar

[21] Y. Prabhu, B. Siva Kumari, K. Venkateswara Rao, V. Kavitha, D. Aruna Padmavathi, Surfactant assisted synthesis of ZnO nanoparticles, characterization and its antimicrobial activity against Staphylococcus aureus and Escherichia coli, Int J Curr Eng Technol, 4 (2014).

Google Scholar

[22] E.A. Meulenkamp, Synthesis and growth of ZnO nanoparticles, J. Phys. Chem. B, 102 (1998) 5566-5572.

Google Scholar

[23] L. -L. Han, L. Cui, W. -H. Wang, J. -L. Wang, X. -W. Du, On the origin of blue emission from ZnO quantum dots synthesized by a sol-gel route, Semicond. Sci. Technol. 27 (2012) 065020.

DOI: 10.1088/0268-1242/27/6/065020

Google Scholar

[24] D. Berger, A. de Moura, L. Oliveira, W. Bastos, F. La Porta, I. Rosa, M. Li, S. Tebcherani, E. Longo, J. Varela, Improved photoluminescence emission and gas sensor properties of ZnO thin films, Ceramics Int. 42 (2016) 13555-13561.

DOI: 10.1016/j.ceramint.2016.05.148

Google Scholar

[25] N.T. Thanh, N. Maclean, S. Mahiddine, Mechanisms of nucleation and growth of nanoparticles in solution, Chem. rev. 114 (2014) 7610-7630.

DOI: 10.1021/cr400544s

Google Scholar

[26] R. Viswanatha, H. Amenitsch, D. Sarma, Growth kinetics of ZnO nanocrystals: a few surprises, J. Am. Chem. Soc. 129 (2007) 4470-4475.

DOI: 10.1021/ja068161b

Google Scholar

[27] L. Spanhel, M.A. Anderson, Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids, J. Am. Chem. Soc. 113 1991) ) 2826-2833.

DOI: 10.1021/ja00008a004

Google Scholar

[28] D. Segets, M.A. Hartig, J. Gradl, W. Peukert, A population balance model of quantum dot formation: Oriented growth and ripening of ZnO, Chem. Eng. Sci. 70 (2012) 4-13.

DOI: 10.1016/j.ces.2011.04.043

Google Scholar

[29] I.M. Lifshitz, V.V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phy. Chem. Solids, 19 (1961) 35-50.

DOI: 10.1016/0022-3697(61)90054-3

Google Scholar

[30] B. Sikora, K. Fronc, I. Kaminska, A. Baranowska-Korczyc, K. Sobczak, P. Dłużewski, D. Elbaum, The growth kinetics of colloidal ZnO nanoparticles in alcohols, J. sol-gel sci. technol. 61 (2012) 197-205.

DOI: 10.1007/s10971-011-2614-5

Google Scholar