[1]
J.T.D. Ty, N. Dannehl, D. Schlettwein, H. Yanagi, Hybrid Organic-Inorganic Solar Cells with Electrodeposited Al-Doped Zinc Oxide, J. Nanosci. Nanotechnol. 16 (2016) 3402-3406.
DOI: 10.1166/jnn.2016.12291
Google Scholar
[2]
M. Belhaj, C. Dridi, H. Elhouichet, J.C. Valmalette , Study of ZnO nanoparticles based hybrid nanocomposites for optoelectronic applications, J. Appl. Phys. 119 (2016) 095501.
DOI: 10.1063/1.4942525
Google Scholar
[3]
P. Büchele, M. Morana, D. Bagnis, S.F. Tedde, D. Hartmann, R. Fischer, O. Schmidt, Space charge region effects in bidirectional illuminated P3HT: PCBM bulk heterojunction photodetectors, Org. Electro. 22 (2015) 34-29.
DOI: 10.1016/j.orgel.2015.03.027
Google Scholar
[4]
Y. -J. Pu, N. Morishita, T. Chiba, S. Ohisa, M. Igarashi, A. Masuhara, J. Kido, Efficient Electron Injection by Size-and Shape-Controlled Zinc Oxide Nanoparticles in Organic Light-Emitting Devices, ACS appl. mater. interfaces 7 (2015) 25373-25377.
DOI: 10.1021/acsami.5b07742
Google Scholar
[5]
A. Kaushik, R. Kumar, S.K. Arya, M. Nair, B. Malhotra, S. Bhansali, Organic-inorganic hybrid nanocomposite-based gas sensors for environmental monitoring, Chem. rev. 115 (2015) 4571-4606.
DOI: 10.1021/cr400659h
Google Scholar
[6]
T. Dixit, A. Bilgaiyan, I. Palani, D. Nakamura, T. Okada, V. Singh, Influence of potassium permanganate on the anisotropic growth and enhanced UV emission of ZnO nanostructures using hydrothermal process for optoelectronic applications, J. Sol-Gel Sci. Technol. 75 (2015).
DOI: 10.1007/s10971-015-3741-1
Google Scholar
[7]
S. Ameen, M.S. Akhtar, H. -K. Seo, M.K. Nazeeruddin, H. -S. Shin, An insight into atmospheric plasma jet modified ZnO quantum dots thin film for flexible perovskite solar cell: optoelectronic transient and charge trapping studies, J. Phys. Chem. C, 119 (2015).
DOI: 10.1021/acs.jpcc.5b00933
Google Scholar
[8]
J. -J. Wang, Y. -Q. Wang, F. -F. Cao, Y. -G. Guo, L. -J. Wan, Synthesis of monodispersed wurtzite structure CuInSe 2 nanocrystals and their application in high-performance organic− inorganic hybrid photodetectors, J. Am. Chem. Soc. 132 (2010).
DOI: 10.1021/ja1057955
Google Scholar
[9]
R. Liu, Hybrid organic/inorganic nanocomposites for photovoltaic cells, Materials, 7 (2014) 2747-2771.
Google Scholar
[10]
A. B Djurisic, X. Y Chen, Y. H Leung, Recent progress in hydrothermal synthesis of zinc oxide nanomaterials, Recent pat. nanotechnol. 6 (2012) 124-134.
DOI: 10.2174/187221012800270180
Google Scholar
[11]
M. Zobel, H. Chatterjee, G. Matveeva, U. Kolb, R.B. Neder, Room-temperature sol-gel synthesis of organic ligand-capped ZnO nanoparticles, J. Nanoparticle Res. 17 (2015) 1-11.
DOI: 10.1007/s11051-015-3006-5
Google Scholar
[12]
B.L. Caetano, C.V. Santilli, F. Meneau, V. Briois, S.H. Pulcinelli, In Situ and Simultaneous UV− vis/SAXS and UV− vis/XAFS Time-Resolved Monitoring of ZnO Quantum Dots Formation and Growth, J. Phys. Chem. C 115 (2011) 4404-4412.
DOI: 10.1021/jp109585t
Google Scholar
[13]
B.L. Caetano, C.V. Santilli, S.H. Pulcinelli, V. Briois, SAXS and UV-Vis combined to QuickXAFS monitoring of ZnO nanoparticles formation and growth, Phase Transitions, 84 (2011) 714725.
DOI: 10.1080/01411594.2011.569318
Google Scholar
[14]
J. Geng, L. Jiang, J. Zhu, Crystal formation and growth mechanism of inorganic nanomaterials in sonochemical syntheses, Sci. China Chem. 55 (2012) 2292-2310.
DOI: 10.1007/s11426-012-4732-5
Google Scholar
[15]
J.H. Bang, K.S. Suslick, Applications of ultrasound to the synthesis of nanostructured materials, Adv. Mater. 22 (2010) 1039-1059.
DOI: 10.1002/adma.200904093
Google Scholar
[16]
G. Cravotto, P. Cintas, Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications, Chem. Soc. Rev. 35 (2006) 180-196.
DOI: 10.1039/b503848k
Google Scholar
[17]
W. Yang, H. Yang, W. Ding, B. Zhang, L. Zhang, L. Wang, M. Yu, Q. Zhang, High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method, Ultrason. sonochem. 33 (2016) 106-117.
DOI: 10.1016/j.ultsonch.2016.04.020
Google Scholar
[18]
E. Moghaddam, A. Youzbashi, A. Kazemzadeh, M. Eshraghi, Preparation of surface-modified ZnO quantum dots through an ultrasound assisted sol-gel process, Appl. Surf. Sci. 346 (2015) 111114.
DOI: 10.1016/j.apsusc.2015.03.207
Google Scholar
[19]
S. Repp, E. Erdem , Controlling the exciton energy of zinc oxide (ZnO) quantum dots by changing the confinement conditions, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 152 (2016) 637-644.
DOI: 10.1016/j.saa.2015.01.110
Google Scholar
[20]
L. Zhang, L. Yin, C. Wang, N. Lun, Y. Qi, D. Xiang, Origin of visible photoluminescence of ZnO quantum dots: defect-dependent and size-dependent, J. Phys. Chem. C, (2010) 9651-9658.
DOI: 10.1021/jp101324a
Google Scholar
[21]
Y. Prabhu, B. Siva Kumari, K. Venkateswara Rao, V. Kavitha, D. Aruna Padmavathi, Surfactant assisted synthesis of ZnO nanoparticles, characterization and its antimicrobial activity against Staphylococcus aureus and Escherichia coli, Int J Curr Eng Technol, 4 (2014).
Google Scholar
[22]
E.A. Meulenkamp, Synthesis and growth of ZnO nanoparticles, J. Phys. Chem. B, 102 (1998) 5566-5572.
Google Scholar
[23]
L. -L. Han, L. Cui, W. -H. Wang, J. -L. Wang, X. -W. Du, On the origin of blue emission from ZnO quantum dots synthesized by a sol-gel route, Semicond. Sci. Technol. 27 (2012) 065020.
DOI: 10.1088/0268-1242/27/6/065020
Google Scholar
[24]
D. Berger, A. de Moura, L. Oliveira, W. Bastos, F. La Porta, I. Rosa, M. Li, S. Tebcherani, E. Longo, J. Varela, Improved photoluminescence emission and gas sensor properties of ZnO thin films, Ceramics Int. 42 (2016) 13555-13561.
DOI: 10.1016/j.ceramint.2016.05.148
Google Scholar
[25]
N.T. Thanh, N. Maclean, S. Mahiddine, Mechanisms of nucleation and growth of nanoparticles in solution, Chem. rev. 114 (2014) 7610-7630.
DOI: 10.1021/cr400544s
Google Scholar
[26]
R. Viswanatha, H. Amenitsch, D. Sarma, Growth kinetics of ZnO nanocrystals: a few surprises, J. Am. Chem. Soc. 129 (2007) 4470-4475.
DOI: 10.1021/ja068161b
Google Scholar
[27]
L. Spanhel, M.A. Anderson, Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids, J. Am. Chem. Soc. 113 1991) ) 2826-2833.
DOI: 10.1021/ja00008a004
Google Scholar
[28]
D. Segets, M.A. Hartig, J. Gradl, W. Peukert, A population balance model of quantum dot formation: Oriented growth and ripening of ZnO, Chem. Eng. Sci. 70 (2012) 4-13.
DOI: 10.1016/j.ces.2011.04.043
Google Scholar
[29]
I.M. Lifshitz, V.V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phy. Chem. Solids, 19 (1961) 35-50.
DOI: 10.1016/0022-3697(61)90054-3
Google Scholar
[30]
B. Sikora, K. Fronc, I. Kaminska, A. Baranowska-Korczyc, K. Sobczak, P. Dłużewski, D. Elbaum, The growth kinetics of colloidal ZnO nanoparticles in alcohols, J. sol-gel sci. technol. 61 (2012) 197-205.
DOI: 10.1007/s10971-011-2614-5
Google Scholar