Controlling of Polarity on the Surface Passivation Mechanism of Al2O3 for Black Silicon by CLD

Article Preview

Abstract:

Thin Al2O3 films were deposited on p-type black silicon (b-Si) by using chemical liquid phase deposition (CLD) technique. The influence of annealing temperatures on the structural and optical properties of Al2O3 films was investigated. The b-Si with 80-nm Al2O3 films exhibits a low total reflectance of 5%. The sample annealed 300 °C exhibits negative fixed charge with the density of 1.5×1012 cm-2. With the increasing of annealing temperature, negative shift of C-V curve was observed, indicating the polarity of fixed charge changes to positive, with maximal the density of 8.7×1011 cm-2. The evolution of the polarity of fixed charge is assigned to the decreasing of O: Al ratio caused by the transition of the crystalline type of Al2O3. The change of fixed charge polarity in Al2O3 provides a feasible route for both p- and n-type Si passivation in Si solar cells by adjusting the thermal post-treatment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

18-26

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Moreno, D. Daineka, P. Roca, and I. Cabarrocas, Sol. Energy Mater. Sol. Cells 94, 733-737 (2010).

Google Scholar

[2] Y. Xia, B. Liu, J. Liu, Z. Shen, and C. Li, Solar energy 85, 1574-1578 (2011).

Google Scholar

[3] D. Kumar, S. K. Srivastava, P. K. Singh, M. Husain, and V. Kumar, Sol. Energy Mater. Sol. Cells 95, 215-218 (2011).

Google Scholar

[4] M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, Appl. Phys. Lett. 85, 5694-5696 (2004).

Google Scholar

[5] J. Schmidt, F. Wernera, H. Veith, D. Zielke, S. Steingrube, P. P. Altermatt, S. Gatz, T. Dullweber , R. Brendel, Energy Procedia 15, 30-39 (2012).

DOI: 10.1016/j.egypro.2012.02.004

Google Scholar

[6] G. Dingemans, N. M. Terlinden, D. Pierreux, H. B. Profijt, M. C. M. van de Sanden, and W. M. M. Kessels, Electrochem. Solid-State Lett. 14, H1-H4 (2011).

DOI: 10.1149/1.3501970

Google Scholar

[7] A. Lanterne, J. L. Perchec, S. Gall, S. Manuel, M. Coig, A. Tauzin, and Y. Veschetti, Prog. Photovolt. 23, 1458-1465 (2015).

DOI: 10.1002/pip.2574

Google Scholar

[8] T. Tachibana, T. Sameshima, Y. Iwashita, Y. Kiyota, T. Chikyow, H. Yoshida, K. Arafune, S. Satoh, and A. Ogura, Jpn. J. Appl. Phys. 50, 040DP09 (2011).

DOI: 10.7567/jjap.50.04dp09

Google Scholar

[9] V. Naumann, M. Otto, R. B. Wehrspohn, and C. Hagendorf, Energy Procedia 27, 1-6 (2012).

Google Scholar

[10] S. Hiroyuki, M. Nobuki, Vacuum 125, 133-140 (2016).

Google Scholar

[11] D. J. Mandia, W. J. Zhou, M. J. Ward, H. Joress, J. J. Sims, J. B. Giorgi, J. Albert, S. T. Barry, Nanotechnology 26, 434002 (2015).

DOI: 10.1088/0957-4484/26/43/434002

Google Scholar

[12] Y. Aoki, and K. Kasano, Mol. Cryst. Liq. Cryst. 621, 162-168 (2015).

Google Scholar

[13] P. Menna, G. D. Francia, and V. L. Ferrara, Sol. Energy Mater. Sol. Cells 37, 13-24(1995).

Google Scholar

[14] G. P. Panasyuk, V. N. Belan, I. L. Voroshilov, and D. G. Shabalin, Inorg. Mater. 44, 45-50 (2008).

Google Scholar

[15] X. C. Li, B. K. Tay, P. Miele, A. Brioude, and D. Cornu, Appl. Surf. Sci. 255, 7147-52 (2009).

Google Scholar

[16] L. Q. Zhu, X. Li, Z. H. Yan, H. L. Zhang, and Q. Wan, IEEE Electron Dev. Lett. 33, 1753-1755 (2012).

Google Scholar

[17] F. Werner, B. Veith, D. Zielke, L. Kühnemund, and C. Tegenkamp, J. Appl. Phys. 109, 113701 (2011).

Google Scholar

[18] M. K. Matsunaga, T. Tanaka, T. Yamamoto, and Y. Ikuhara, Phys. Rev. B 68, 085110 (2003).

Google Scholar

[19] S. J. Yun, K. Lee, J. Skarp, H. Kim, and K. Nam, J. Vac. Sci. Technol. A 15,2993 (1997).

Google Scholar

[20] M. D. Groner, J. W. Elam, F. H. Fabreguette, S. M. George, Thin Solid Films 413, 186-197 (2002).

DOI: 10.1016/s0040-6090(02)00438-8

Google Scholar

[21] S. W. Glunz, D. Biro, S. Rein, and W. Warta, J. Appl. Phys. 86, 683(1999).

Google Scholar

[22] R. S. Johnson, G. Licovski, and I. Baumvol, J. Vac. Sci. Technol. 19, 1353-1360 (2001).

Google Scholar

[23] M. K. Matsunaga, T. Tanaka, T. Yamamoto, Y. Ikuhara, Phys. Rev. B 68, 085110 (2003).

Google Scholar

[24] D. K. Simon, P. M. Jordan, T. Mikolojick, and I. Dirnstorfer, ACS Appl. Mater. Interfaces 51, 28215-28222 (2015).

Google Scholar

[25] J. Buckley, B. D. Salvo, D. Deleruyelle, M. Gely, G. Nicotra, S. Lombardo, J. F. Damlencourt, P. Hollinger, F. Martin, and S. Deleonibus, Microelectron. Eng. 80, 210-213 (2005).

DOI: 10.1016/j.mee.2005.04.070

Google Scholar

[26] P. F. Yan, K. Du, M. L. Sui, and Acta Mater. 58, 3867-3876 (2010).

Google Scholar