Toxicity Evaluation, HET-CAM Irritation, and Anti-Irritant Potential of Rice Bran Wax Policosanol Nanoemulsion

Article Preview

Abstract:

Policosanol, a mixture of long-chain alcohols found in animal and plant waxes, has several biological effects. However, it has a bioavailability of less than 10%. One of the ways of improving bioavailability is by nanoemulsion formulation. We developed rice bran wax policosanol nanoemulsion (npol) using high-pressure homogenization. Even though earlier toxicological studies did not show policosanol-related toxicity, it is an essential part of the development of the therapeutic formulation to evaluate its toxicity status. In this study, in vitro, in vivo toxicity, and irritation and anti-irritation potential of the npol were evaluated. 3T3-L1 cells and Sprague Dawley rats were treated with npol in the in vitro and acute oral toxicity tests; while the Hen’s Egg Test Chorio-Allantoic membrane (HET-CAM) was used to test for its irritation and anti-irritation potential. npol at 2mg/mL showed lower toxicity to 3T3-L1 cells by MTT assay compared to the same concentration of policosanol after 24 (60 and 50% viabilities), 48 (62 and 58% viabilities), and 72 (110 and 89% viabilities) hours, respectively. npol was non-irritant and has slightly anti-irritant potential based on the HET-CAM test. There was also no significant toxicity to a limit test dose of 40 ml/Kg body weight of npol (containing 2000 mg/Kg body weight of policosanol) in acute oral toxicity test on Sprague-Dawly rats. The results suggest that policosanol nanoemulsion is a safe formulation devoid of toxicity and irritation potential.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

44-55

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Frank, N., Andrews, F. M, Elliott, S.B., Lew, J., and Boston, R.C. Effects of rice bran oil on plasma lipid concentrations, lipoprotein composition, and glucose dynamics in mares. Journal of animal science, 2005. 83(11): 2509-2518.

DOI: 10.2527/2005.83112509x

Google Scholar

[2] Stevinson, C., M.H. Pittler, and E. Ernst. Garlic for treating hypercholesterolemia A meta-analysis of randomized clinical trials. Annals of internal medicine, 2000. 133(6): 420-429.

DOI: 10.7326/0003-4819-133-6-200009190-00009

Google Scholar

[3] Temple, N.J., Antioxidants and disease: more questions than answers. Nutrition Research, 2000. 20(3): 449-459.

DOI: 10.1016/s0271-5317(00)00138-x

Google Scholar

[4] Chaudhary, A., et al., Enhancement of solubilization and bioavailability of poorly soluble drugs by physical and chemical modifications: A recent review. Journal of Advanced Pharmacy Education & Research, 2012. 2(1): 32-67.

Google Scholar

[5] Cheng, W.P., et al., Polyelectrolyte nanoparticles with high drug loading enhance the oral uptake of hydrophobic compounds. Biomacromolecules, 2006. 7(5): 1509-1520.

DOI: 10.1021/bm060130l

Google Scholar

[6] Farinha, A., A. Bica, and P. Tavares. Improved bioavailability of a micronized megestrol acetate tablet formulation in humans. Drug development and industrial pharmacy, 2000. 26(5): 567-570.

DOI: 10.1081/ddc-100101270

Google Scholar

[7] Hu, J., K.P. Johnston, and R.O. Williams III. Nanoparticle engineering processes for enhancing the dissolution rates of poorly water soluble drugs. Drug development and industrial pharmacy, 2004. 30(3): 233-245.

DOI: 10.1081/ddc-120030422

Google Scholar

[8] Kumar, A., Ahuja, A., Ali, J., & Baboota, S. Conundrum and therapeutic potential of curcumin in drug delivery. Critical Reviews™ in Therapeutic Drug Carrier Systems, 2010. 27(4).

DOI: 10.1615/critrevtherdrugcarriersyst.v27.i4.10

Google Scholar

[9] Guideline, I.H.T. Guidance on nonclinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals M3 (R2). in International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use. (2009).

DOI: 10.1002/9780471462422.eoct457

Google Scholar

[10] Berridge, M.V., et al., The biochemical and cellular basis of cell proliferation assays that use tetrazolium salts. Biochemica, 1996. 4(1): 15-19.

Google Scholar

[11] van Meerloo, J., G.J. Kaspers, and J. Cloos, Cell sensitivity assays: the MTT assay, in Cancer Cell Culture. 2011, Springer: 237-245.

DOI: 10.1007/978-1-61779-080-5_20

Google Scholar

[12] Babich, H. and E. Borenfreund, Cytotoxic effects of food additives and pharmaceuticals on cells in culture as determined with the neutral red assay. Journal of pharmaceutical sciences, 1990. 79(7): 592-594.

DOI: 10.1002/jps.2600790709

Google Scholar

[13] Borenfreund, E. and J.A. Puerner, A simple quantitative procedure using monolayer cultures for cytotoxicity assays (HTD/NR-90). Journal of tissue culture methods, 1985. 9(1): 7-9.

DOI: 10.1007/bf01666038

Google Scholar

[14] Haneke, K.E., Tice, R. R., Carson, B. L., Margolin, B. H., & Stokes, W. S. ICCVAM evaluation of the murine local lymph node assay: III. Data analyses completed by the national toxicology program interagency center for the evaluation of alternative toxicological methods. Regulatory Toxicology and Pharmacology, 2001. 34(3): 274-286.

DOI: 10.1006/rtph.2001.1498

Google Scholar

[15] Spielmann, H., Genschow, E., Liebsch, M., & Halle, W. Determination of the starting dose for acute oral toxicity (LD50) testing in the up and down procedure (UDP) from cytotoxicity data. ATLA. Alternatives to laboratory animals, 1999. 27(6): 957-966.

DOI: 10.1177/026119299902700609

Google Scholar

[16] Shetty Akhila, J. and M. Alwar, Acute toxicity studies and determination of median lethal dose. Current Science. 2007. 93: 917-920.

Google Scholar

[17] Luepke, N., Hen's egg chorioallantoic membrane test for irritation potential. Food and Chemical Toxicology, 1985. 23(2): 287-291.

DOI: 10.1016/0278-6915(85)90030-4

Google Scholar

[18] Wilson, T.D. and W.F. Steck, A modified HET-CAM assay approach to the assessment of anti-irritant properties of plant extracts. Food Chem Toxicology, 2000. 38(10): 867-72.

DOI: 10.1016/s0278-6915(00)00091-0

Google Scholar

[19] Steiling, W., Bracher, M., Courtellemont, P., and De Silva, O. The HET–CAM, a useful In uitro assay for assessing the eye Irritation properties of cosmetic formulations and ingredients. Toxicology in vitro, 1999. 13(2): 375-384.

DOI: 10.1016/s0887-2333(98)00091-5

Google Scholar

[20] Bagley, D., D. Cerven, and J. Harbell, Assessment of the chorioallantoic membrane vascular assay (CAMVA) in the COLIPA in vitro eye irritation validation study. Toxicology in vitro, 1999. 13(2): 285-293.

DOI: 10.1016/s0887-2333(98)00089-7

Google Scholar

[21] Demirci, F., Paper, D.H., Franz, G. and Baser, K.H.C. Investigation of the Origanum onites L. essential oil using the chorioallantoic membrane (CAM) assay. Journal of agricultural and food chemistry, 2004. 52(2): 251-254.

DOI: 10.1021/jf034850k

Google Scholar

[22] Frei, B., Heinrich, M., Bork, P.M., Herrmann, D., Jaki, B., Kato, T., Kuhnt, M., Schmitt, J., Schühly, W., Volken, C. and Sticher, O. Multiple screening of medicinal plants from Oaxaca, Mexico: ethnobotany and bioassays as a basis for phytochemical investigation. Phytomedicine 1998. 5(3): 177-186.

DOI: 10.1016/s0944-7113(98)80025-1

Google Scholar

[23] Bernardi, D.S., Pereira, T.A., Maciel, N.R., Bortoloto, J., Viera, G.S., Oliveira, G.C. and Rocha-Filho, P.A. Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in vivo assessments. Journal of nanobiotechnology 2011. 9: 44.

DOI: 10.1186/1477-3155-9-44

Google Scholar

[24] Moura do Carmo, D.F., Amaral, A.C.F., Machado, G., Leon, L.L. and Silva, J.R.D.A. Chemical and biological analyses of the essential oils and main constituents of Piper species. Molecules 2012. 17(2): 1819-1829.

DOI: 10.3390/molecules17021819

Google Scholar

[25] Scharnagl, H. and W. Marz, New lipid-lowering agents acting on LDL receptors. Current topics in medicinal chemistry, 2005. 5(3): 233-242.

DOI: 10.2174/1568026053544524

Google Scholar

[26] Arruzazabala, M. d.L., Carbajal, D., Mas, R., Molina, V., Valdes, S., & Laguna, A Cholesterol-lowering effects of policosanol in rabbits. Biological research, 1993. 27(3-4): pp.205-208.

Google Scholar

[27] Kato, S., K-I. Karino, S. Hasegawa, J. Nagasawa, A. Nagasaki, M. Eguchi, Octacosanol affects lipid metabolism in rats fed on a high-fat diet. British Journal of Nutrition, 1995. 73(3): 433-442.

DOI: 10.1079/bjn19950045

Google Scholar

[28] Zardoya, R., Tula, L., Castaño, G., Más, R., Illnait, J., Fernández, J. C., .. & Fernández, L. Effects of policosanol on hypercholesterolemic patients with abnormal serum biochemical indicators of hepatic function. Current therapeutic research, 1996. 57(7): pp.568-577.

DOI: 10.1016/s0011-393x(96)80068-3

Google Scholar

[29] Gouni-Berthold, I. and H.K. Berthold, Policosanol: clinical pharmacology and therapeutic significance of a new lipid-lowering agent. American Heart Journal, 2002. 143(2): 356-365.

DOI: 10.1067/mhj.2002.119997

Google Scholar

[30] Arruzazabala, M de L., Valdes, S., Mas, R., Fernández, L., Carbajal, D. Effect of policosanol successive dose increases on platelet aggregation in healthy volunteers. Pharmacological Research, 1996. 34(5): 181-185.

DOI: 10.1006/phrs.1996.0086

Google Scholar

[31] Pope, L.E., Marcelletti, J. F., Katz, L. R., Lin, J. Y., Katz, D. H., Parish, M. L., & Spear, P. G. The anti-herpes simplex virus activity of< i> n</i>-docosanol includes inhibition of the viral entry process. Antiviral research, 1998. 40(1): 85-94.

DOI: 10.1016/s0166-3542(98)00048-5

Google Scholar

[32] Castaño, G., Más, R., Gámez, R., Fernández, L., & Illnait, J.  Effects of policosanol and ticlopidine in patients with intermittent claudication: a double-blinded pilot comparative study. Angiology, 2004. 55(4): 361-371.

DOI: 10.1177/000331970405500403

Google Scholar

[33] Wong, W. T., Ismail, M., Imam, M. U., & Zhang, Y. D. (2016). Modulation of platelet functions by crude rice (Oryza sativa) bran policosanol extract. BMC Complementary and Alternative Medicine: 16(1), 1.

DOI: 10.1186/s12906-016-1223-9

Google Scholar

[34] Backes, J.M.,  Gibson, C. A., Ruisinger, J. F., & Moriarty, P. M Modified-policosanol does not reduce plasma lipoproteins in hyperlipidemic patients when used alone or in combination with statin therapy. Lipids, 2011. 46(10): 923-929.

DOI: 10.1007/s11745-011-3591-8

Google Scholar

[35] Berthold, H.K., Unverdorben, S., Degenhardt, R., Bulitta, M., & Gouni-Berthold, I. Effect of policosanol on lipid levels among patients with hypercholesterolemia or combined hyperlipidemia. JAMA: the journal of the American Medical Association, 2006. 295(19): 2262-2269.

DOI: 10.1001/jama.295.19.2262

Google Scholar

[36] Cubeddu, L.X., Cubeddu, R. J., Heimowitz, T., Restrepo, B., Lamas, G. A., & Weinberg, G. B.  Comparative lipid-lowering effects of policosanol and atorvastatin: a randomized, parallel, double-blind, placebo-controlled trial. American heart journal, 2006. 152(5): 982. e1-982. e5.

DOI: 10.1016/j.ahj.2006.08.009

Google Scholar

[37] Dulin, M.F., Hatcher, L. F., Sasser, H. C., & Barringer, T. A. Policosanol is ineffective in the treatment of hypercholesterolemia: a randomized controlled trial. The American journal of clinical nutrition, 2006. 84(6): 1543-1548.

DOI: 10.1093/ajcn/84.6.1543

Google Scholar

[38] Greyling, A., De Witt, C., Oosthuizen, W., & Jerling, J. C Effects of a policosanol supplement on serum lipid concentrations in hypercholesterolaemic and heterozygous familial hypercholesterolaemic subjects. British Journal of Nutrition, 2006. 95(05): 968-975.

DOI: 10.1079/bjn20061715

Google Scholar

[39] Swanson, B., Keithley, J. K., Beverly, E. S., Fogg, L., Nerad, J., Novak, R. M., & Spear, G. T. Policosanol for Managing Human Immunodeficiency Virus–related Dyslipidemia in a Medically Underserved Population: A Randomized, Controlled Clinical Trial. Alternative therapies in health and medicine, 2011. 17(2): 30.

Google Scholar

[40] Swanson, B. and J. Keithley, Policosanol to manage dyslipidemia in older adults. Complementary and Alternative Therapies and the Aging Population: An Evidence-Based Approach, 2011: 117.

DOI: 10.1016/b978-0-12-374228-5.00007-x

Google Scholar

[41] Kabir, Y. and S. Kimura, Biodistribution and metabolism of orally administered octacosanol in rats. Annals of nutrition and metabolism, 1993. 37(1): 33-38.

DOI: 10.1159/000177746

Google Scholar

[42] Guglielmini, G., Nanostructured novel carrier for topical application. Clinics in dermatology, 2008. 26(4): 341-346.

DOI: 10.1016/j.clindermatol.2008.05.004

Google Scholar

[43] Ishaka, A., Imam, M. U., Mahamud, R., Zuki, A. B. Z., & Maznah, I. Characterization of rice bran wax policosanol and its nanoemulsion formulation. International Journal of Nanomedicine, 2014. 9: 2261.

DOI: 10.2147/ijn.s56999

Google Scholar

[44] Cazedey, E. C. L., Carvalho, F. C., Fiorentino, F. A. M., Gremião, M. P. D., & Salgado, H. R. N. Corrositex, BCOP and HET-CAM as alternative methods to animal experimentation. " Brazilian Journal of Pharmaceutical Sciences. 2009. 45(4) : 759-766.

DOI: 10.1590/s1984-82502009000400021

Google Scholar

[45] OECD, OECD Guideline 425: Acute oral toxicity—Up-and-down procedure, in OECD Guideline for the Testing of Chemicals, Section 4 2008, Organisation for Economic Co-operation and Development: Paris, France.

DOI: 10.1787/9789264071049-en

Google Scholar

[46] Gámez, R.,  Alemán, C. L., Más, R., Noa, M., Rodeiro, I., García, H. & Aguilar, C. A 6-month study on the toxicity of high doses of policosanol orally administered to Sprague-Dawley rats. Journal of medicinal food, 2001. 4(2): 57-65.

DOI: 10.1089/109662001300341707

Google Scholar

[47] Lü, L.,  Zhang, L., Wai, M. S. M., Yew, D. T. W., & Xu, J. Exocytosis of MTT formazan could exacerbate cell injury. Toxicology in Vitro, 2012. 26(4): 636-644.

DOI: 10.1016/j.tiv.2012.02.006

Google Scholar

[48] Riss, T. L., Moravec, R. A., Niles, A. L., Benink, H. A., Worzella, T. J., & Minor, L. 2015. Cell viability assays.

Google Scholar

[49] Mehling, A., M. Kleber, and H. Hensen, Comparative studies on the ocular and dermal irritation potential of surfactants. Food and chemical toxicology, 2007. 45(5): 747-758.

DOI: 10.1016/j.fct.2006.10.024

Google Scholar

[50] Hong, T. -K., Tripathy, N., Son, H. J., Ha, K. T., Jeong, H. S., & Hahn, Y. B.  A comprehensive in vitro and in vivo study of ZnO nanoparticles toxicity. Journal of Materials Chemistry B, 2013. 1(23): 2985-2992.

DOI: 10.1039/c3tb20251h

Google Scholar

[51] Fields, D. and H. Paul, Physiological mechanisms impacting weight regulation, in Handbook of childhood and adolescent obesity 2008, Springer. 109-126.

DOI: 10.1007/978-0-387-76924-0_8

Google Scholar

[52] Alemán, C.L., A 12-month study of policosanol oral toxicity in Sprague Dawley rats A 12-month study of policosanol oral toxicity in Sprague Dawley rats. Toxicology letters, 1994. 70(1): 77-87.

DOI: 10.1016/0378-4274(94)90147-3

Google Scholar

[53] Abdelatif, A.M., S.A. Elsayed, and Y.M. Hassan, Effect of state of hydration on body weight, blood constituents and urine excretion in Nubian goats (Capra hircus). World Jour‐nal of Agricultural Sciences, 2010. 6(2): 178-188.

Google Scholar

[54] Her, M., Lee, Y., Jung, E., Kim, T., & Kim, D. (2011). Liver enzyme  Liver enzyme abnormalities in systemic lupus erythematosus: a focus on toxic hepatitis. Rheumatology international, 2011. 31(1): 79-84.

DOI: 10.1007/s00296-009-1237-4

Google Scholar

[55] Li, S. -D. and Huang, L. Pharmacokinetics and biodistribution of nanoparticles. Molecular pharmaceutics, 2008. 5(4): 496-504.

Google Scholar

[56] Giboney, P.T. Mildly elevated liver transaminase levels in the asymptomatic patient. Am Fam Physician, 2005. 71(6): 1105-10.

Google Scholar

[57] Abboud, G. and N. Kaplowitz, Drug-induced liver injury. Drug Safety, 2007. 30(4): 277-294.

DOI: 10.2165/00002018-200730040-00001

Google Scholar

[58] Naughton, C.A., Drug-induced nephrotoxicity. American family physician, 2008. 78(6): 743-750.

Google Scholar