[1]
Ching S. chen, Yuan T. Lai, Tzu W. Lai, et al. Formation of Cu nanoparticles in SBA-15 functionalized with carboxylic acid group and their application in the water-gas shift reaction. ACS Catal., 2013, 3(4), 667-677.
DOI: 10.1021/cs400032e
Google Scholar
[2]
Mayank Shekhar, Jun Wang, Wen-Sheng Lee, et al. Size and support effects for the water-gas shift catalysis over gold nanoparticles supported on model Al2O3 and TiO2. J. Am. Chem. Soc., 2012, 134(10), 4700-4708.
DOI: 10.1021/ja210083d
Google Scholar
[3]
Jincan Kang, Weiping Deng, Qinghong Zhang, Ye Wang. Ru particle size effect in Ru/CNT-catalyzed Fischer-Tropsch synthesis. Journal of Energy Chemistry, 2013, 22(2), 321-328.
DOI: 10.1016/s2095-4956(13)60039-x
Google Scholar
[4]
Manhong Liu, Weiyong Yu, Hanfan Liu, and Jingming Zheng, Preparation and characterization of polymer stabilized ruthenium -platinum and ruthenium-palladium bimetallic colloids and their catalytic properties for hydrogenation of ο-chloronitrobenzene. Journal of Collioid and Interface Science. 1999, 214(2), 231-237.
DOI: 10.1006/jcis.1999.6186
Google Scholar
[5]
Inês Rabelo de Moraes, Welliton José da Silva, Simone Tronto, Jose Mauricio Rosolen. Carbon fibers with cup-stacked-type structure: An advantageous support for Pt-Ru catalyst in methanol oxidation. J. Power Sources, 2006, 160(2), 997-1002.
DOI: 10.1016/j.jpowsour.2006.02.014
Google Scholar
[6]
Taeyoung Koh, Hyun Mo Koo, Taekyung Yu, Byungkwon Lim, Jong wook Bae. Roles of ruthenium-support interactions of size-controlled ruthenium nanoparticles for the product distribution of Fischer-Tropsch synthesis. ACS catal. 2014. 4(4), 1054-1060.
DOI: 10.1021/cs401011q
Google Scholar
[7]
L. Xiong, A. Manthiram. Catalytic activity of Pt-Ru alloys synthesized by a microemulsion method in direct methanol fuel cells. Solid State Ionics, 2005, 176(3-4), 385.
DOI: 10.1016/j.ssi.2004.08.005
Google Scholar
[8]
Sergio Rojas; Francisco J. García-García; Sven Järas, et al. Preparation of carbon supported Pt and Pt-Ru nanoparticles from microemulsion eletrocatalysts for fuel cell applications. Applied Catalysis A: General, 2005, 285(1-2), 24.
DOI: 10.1016/j.apcata.2005.02.005
Google Scholar
[9]
Shancheng Yan, Peng Qu, Haitao Wang, Tian Tian, Zhongdang Xiao. Synthesis of Ru/multiwalled carbon nanotubes by microemulsion for electrochemical supercapacitor. Materials Research Bulletin. 2008, 43(10), 2818-2824.
DOI: 10.1016/j.materresbull.2007.10.041
Google Scholar
[10]
Juan María González Carballo, Jia Yang, Anders Holmen, et al. Catalytic effects of ruthenium particle size on the Fischer-Tropsch synthesis. Journal of catalysis. 2011, 284(1), 102-108.
DOI: 10.1016/j.jcat.2011.09.008
Google Scholar
[11]
Jian Chen, Jinlin Li, Yanxi Zhao, Yuhua Zhang, Jingping Hong. Effect of Ru nanoparticle sizes confined in cavities of SBA-16 on the catalytic performance of Fischer-Tropsch synthesis reaction. Journal of Natural Gas Chemistry. 2012, 21(6), 673-679.
DOI: 10.1016/s1003-9953(11)60418-0
Google Scholar
[12]
Jincan Kang, Weiping Deng, Qinghong Zhang, Ye Wang. Ru particle size effect in Ru/CNT-catalyzed Fischer-Tropsch synthesis. Journal of Energy Chemistry. 2013, 22(2), 321-328.
DOI: 10.1016/s2095-4956(13)60039-x
Google Scholar
[13]
Susanna Jansat, David Picurelli, Katrin Pelzer, et al. Synthesis, characterization and catalytic reactivity of ruthenium nanoparticles stabilized by chiral N-donor ligands, New Journal of Chemistry, 2006, 30(1), 115.
DOI: 10.1039/b509378c
Google Scholar
[14]
Mahong Liu, Baolin He, Hanfan Liu, and Xiaoping Yan. Unexpected effects of trace impurities on the properties of polymer-stabilized ruthenium collioids from different sources of ruthenium(Ⅲ) chloride hydrate. Journal of Colloids and Interface Science. 2003, 263(2), 461-466.
DOI: 10.1016/s0021-9797(03)00341-2
Google Scholar
[15]
Yuqing Zhang, Jiulong Yu, Haijun Niu, Hanfan Liu. Synthesis of PVP-stabilized ruthenium colloids with low boiling point alcohols. Journal of Colloids and Interface Science. 2007, 313(2), 503-510.
DOI: 10.1016/j.jcis.2007.05.005
Google Scholar
[16]
Sachin U. Nandanwar, Mousumi Chakraborty, Z. V. P. Murthy. Formation of ruthenium nanoparticles by the mixing of two reactive microemulsions. Industrial and Engineering Chemistry Research. 2011, 50(19), 11445-11451.
DOI: 10.1021/ie201043v
Google Scholar
[17]
Xiaoping Yan, Hanfan Liu, Kong Yong Liew. Size control of polymer-stabilized ruthenium nanoparticles by polyol reduction. Journal of Materials Chemistry. 2001, 11(12), 3387-3391.
Google Scholar
[18]
Alain Roucoux, Jürgen Schulz, Henri Patin. Reduced Transition Metal Colloids: A Novel Family of Reusable Catalysts? Chem. Rev., 2002, 102(10), 3757-3778.
DOI: 10.1021/cr010350j
Google Scholar
[19]
Byron D. Gates, Qiaobing Xu, Michael Stewart, Declan Ryan, C. Grant Willson, George M. Whitesides. New Approaches to Nanofabrication: Molding, Printing, and Other Techniques. Chem. Rev. 2005, 105(4), 1171-1196.
DOI: 10.1021/cr030076o
Google Scholar
[20]
Baolin He, Yao Ha, Hanfan Liu, Keming Wang, Kong Yong Liew. Size control synthesis of polymer-stabilized water-soluble platinum oxide nanoparticles. Journal of Colloids and Interface Science. 2007, 308(1), 105-111.
DOI: 10.1016/j.jcis.2006.12.031
Google Scholar
[21]
Baohui Yao, Guocai Xu, Hongyan Zhang, Xiao Han. Synthesis of nanosilver with polyvinylpyrrolidone by microwave method. Chinese juornal of inorganic chemistry. 2010. 26(9), 1629-1632.
Google Scholar
[22]
C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, et al. Handbook of X-Ray photoelectron Spectroscopy. Perkin-Elmer Physical Electronics Division, Eden Prairie, 1979, p.106.
DOI: 10.1002/sia.740030412
Google Scholar