[1]
G.A. Athanasopoulos, Results of direct shear tests on geotextile reinforced cohesive soil, Geotextiles and Geomembranes 14(11) (1996) 619-644.
DOI: 10.1016/s0266-1144(97)00002-2
Google Scholar
[2]
H. Ramesh, K. Manoj, H. Mamatha, Compaction and strength behavior of lime-coir fiber treated Black Cotton soil, Geomechanics and Engineering 2(1) (2010) 19-28.
DOI: 10.12989/gae.2010.2.1.019
Google Scholar
[3]
H. Jiang, Y. Cai, J. Liu, Engineering properties of soils reinforced by short discrete polypropylene fiber, Journal of Materials in civil Engineering 22(12) (2010) 1315-1322.
DOI: 10.1061/(asce)mt.1943-5533.0000129
Google Scholar
[4]
W.L.C.S.C. Hongzhou, W.X.L.M.Y. Jiwei, Physical and mechanical properties of wheat straw and unconfined compressive strength of reinforced inshore saline soil with wheat straw [J], China Civil Engineering Journal 3 (2010) 020.
Google Scholar
[5]
P. Yu, S. Chai, X. Wang, W. Zhang, L. Wei, Reinforcement effects and engineering application of coast salinized soil reinforced with wheat straw, J Tianjin Inst Urban Cons 16(3) (2010) 161-166.
Google Scholar
[6]
P. Wang, S. Chai, X. Wang, L. Wei, M. Li, Analysis of effect factors of heavy compaction test for wheat straw-reinforced saline soil, Rock Soil Mech 32(2) (2011) 448-452.
Google Scholar
[7]
M. LI, S. -x. CHAI, H. -p. DU, L. WEI, Deviator stress-strain characters of reinforced lime-soil with wheat straw and parameters of Duncan-Chang model, Journal of Hebei University of Technology 1 (2011) 022.
Google Scholar
[8]
C. Tang, B. Shi, W. Gao, F. Chen, Y. Cai, Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil, Geotextiles and Geomembranes 25(3) (2007b) 194-202.
DOI: 10.1016/j.geotexmem.2006.11.002
Google Scholar
[9]
K.V. Maheshwari, A.K. Desai, C.H. Solanki, Performance of fiber reinforced clayey soil, Electronic Journal of Geotechnical Engineering 16 (2011).
Google Scholar
[10]
A.S. Zaimoglu, T. Yetimoglu, Strength behavior of fine grained soil reinforced with randomly distributed polypropylene fibers, Geotechnical and Geological Engineering 30(1) (2012) 197-203.
DOI: 10.1007/s10706-011-9462-5
Google Scholar
[11]
P.K. Pradhan, R.K. Kar, A. Naik, Effect of random inclusion of polypropylene fibers on strength characteristics of cohesive soil, Geotechnical and Geological Engineering 30(1) (2012) 15-25.
DOI: 10.1007/s10706-011-9445-6
Google Scholar
[12]
F. Naseri, M. Irani, M. Dehkhodarajabi, Effect of graphene oxide nanosheets on the geotechnical properties of cemented silty soil, Archives of Civil and Mechanical Engineering 16(4) (2016) 695-701.
DOI: 10.1016/j.acme.2016.04.008
Google Scholar
[13]
A.A. Firoozi, M.R. Taha, A.A. Firoozi, T.A. Khan, Assessment of Nano-Zeolite on Soil Properties, (2014).
Google Scholar
[14]
J.L. Coo, Z.P. So, C.W. Ng, Effect of nanoparticles on the shrinkage properties of clay, Engineering Geology 213 (2016) 84-88.
DOI: 10.1016/j.enggeo.2016.09.001
Google Scholar
[15]
M.R. Taha, O.M.E. Taha, Influence of nano-material on the expansive and shrinkage soil behavior, Journal of Nanoparticle Research 14(10) (2012) 1-13.
DOI: 10.1007/s11051-012-1190-0
Google Scholar
[16]
J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gun'ko, Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites, Carbon 44(9) (2006) 1624-1652.
DOI: 10.1016/j.carbon.2006.02.038
Google Scholar
[17]
B. Marrs, R. Andrews, D. Pienkowski, Multiwall carbon nanotubes enhance the fatigue performance of physiologically maintained methyl methacrylate–styrene copolymer, Carbon 45(10) (2007) 2098-2104.
DOI: 10.1016/j.carbon.2007.05.013
Google Scholar
[18]
D.T. Figueiredo, A.A.S. Correia, D. Hunkeler, M.G.B. Rasteiro, Surfactants for dispersion of carbon nanotubes applied in soil stabilization, Colloids and Surfaces A: Physicochemical and Engineering Aspects 480 (2015) 405-412.
DOI: 10.1016/j.colsurfa.2014.12.027
Google Scholar
[19]
J. Alsharef, M.R. Taha, A.A. Firoozi, P. Govindasamy, Potential of Using Nanocarbons to Stabilize Weak Soils, Applied and Environmental Soil Science 2016 (2016).
DOI: 10.1155/2016/5060531
Google Scholar
[20]
T. Nochaiya, A. Chaipanich, Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials, Applied Surface Science 257(6) (2011) 1941-(1945).
DOI: 10.1016/j.apsusc.2010.09.030
Google Scholar
[21]
A. Yazdanbakhsh, Z. Grasley, B. Tyson, R. Abu Al-Rub, Distribution of carbon nanofibers and nanotubes in cementitious composites, Transportation Research Record: Journal of the Transportation Research Board (2142) (2010) 89-95.
DOI: 10.3141/2142-13
Google Scholar
[22]
G.E. Box, Statistics for experiments: an introduction to design, data analysis, and model building, (1978).
Google Scholar
[23]
M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, Optimization of process parameters using D-optimal design for synthesis of ZnO nanoparticles via sol–gel technique, Journal of Industrial and Engineering Chemistry 19(1) (2013).
DOI: 10.1016/j.jiec.2012.07.010
Google Scholar
[24]
S. Senthilkumar, M. Perumalsamy, H.J. Prabhu, C. AhmedBasha, G. Swaminathan, Box behnken design based optimization of solar induced photo catalytic decolourization of textile dye effluent, Central European Journal of Engineering 3(1) (2013).
DOI: 10.2478/s13531-012-0039-8
Google Scholar
[25]
N.K. Jafarzadeh, S. Sharifnia, S.N. Hosseini, F. Rahimpour, Statistical optimization of process conditions for photocatalytic degradation of phenol with immobilization of nano TiO2 on perlite granules, Korean Journal of Chemical Engineering 28(2) (2011).
DOI: 10.1007/s11814-010-0355-8
Google Scholar
[26]
C. Plassard, E. Lesniewska, I. Pochard, A. Nonat, Nanoscale experimental investigation of particle interactions at the origin of the cohesion of cement, Langmuir 21(16) (2005) 7263-7270.
DOI: 10.1021/la050440+
Google Scholar
[27]
P. Kékicheff, S. Marcelja, T. Senden, V. Shubin, Charge reversal seen in electrical double layer interaction of surfaces immersed in 2: 1 calcium electrolyte, The Journal of chemical physics 99(8) (1993) 6098-6113.
DOI: 10.1063/1.465906
Google Scholar
[28]
E. Finot, E. Lesniewska, J. -C. Mutin, J. -P. Goudonnet, Investigations of surface forces between gypsum microcrystals in air using atomic force microscopy, Langmuir 16(9) (2000) 4237-4244.
DOI: 10.1021/la9902439
Google Scholar
[29]
L. Vaisman, G. Marom, H.D. Wagner, Dispersions of Surface-Modified Carbon Nanotubes in Water-Soluble and Water-Insoluble Polymers, Advanced Functional Materials 16(3) (2006) 357-363.
DOI: 10.1002/adfm.200500142
Google Scholar
[30]
A.A. Firoozi, M.R. Taha, A.A. Firoozi, T.A. Khan, Effect of ultrasonic treatment on clay microfabric evaluation by atomic force microscopy, Measurement 66 (2015) 244-252.
DOI: 10.1016/j.measurement.2015.02.033
Google Scholar
[31]
J. Lee, M. Kim, C.K. Hong, S.E. Shim, Measurement of the dispersion stability of pristine and surface-modified multiwalled carbon nanotubes in various nonpolar and polar solvents, Measurement Science and Technology 18(12) (2007) 3707-3712.
DOI: 10.1088/0957-0233/18/12/005
Google Scholar
[32]
A. Alaoui, K.E. Kacemi, K.E. Ass, S. Kitane, Application of Box-Behnken design to determine the optimal conditions of reductive leaching of MnO2 from manganese mine tailings, Transactions of the Indian Institute of Metals 68(5) (2015) 943-950.
DOI: 10.1007/s12666-015-0528-6
Google Scholar
[33]
W.A. Ducker, T.J. Senden, R.M. Pashley, Direct measurement of colloidal forces using an atomic force microscope, (1991).
DOI: 10.1038/353239a0
Google Scholar
[34]
M.M. Ba-Abbad, P.V. Chai, M.S. Takriff, A. Benamor, A.W. Mohammad, Optimization of nickel oxide nanoparticle synthesis through the sol–gel method using Box–Behnken design, Materials & Design 86 (2015) 948-956.
DOI: 10.1016/j.matdes.2015.07.176
Google Scholar
[35]
M.N. Chong, H. Zhu, B. Jin, Response surface optimization of photocatalytic process for degradation of Congo Red using H-titanate nanofiber catalyst, Chemical Engineering Journal 156(2) (2010) 278-285.
DOI: 10.1016/j.cej.2009.10.017
Google Scholar
[36]
J. Qu, C. Li, B. Liu, X. Chen, M. Li, Z. Yao, Effect of random inclusion of wheat straw fibers on shear strength characteristics of Shanghai cohesive soil, Geotechnical and Geological Engineering 31(2) (2013) 511-518.
DOI: 10.1007/s10706-012-9604-4
Google Scholar
[37]
A. Chaipanich, T. Nochaiya, W. Wongkeo, P. Torkittikul, Compressive strength and microstructure of carbon nanotubes–fly ash cement composites, Materials Science and Engineering: A 527(4-5) (2010) 1063-1067.
DOI: 10.1016/j.msea.2009.09.039
Google Scholar
[38]
G.Y. Li, P.M. Wang, X. Zhao, Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes, Carbon 43(6) (2005) 1239-1245.
DOI: 10.1016/j.carbon.2004.12.017
Google Scholar