Facile Synthesis of Chitosan Modified Fe3O4 Magnetic Nanoparticles for Azo Dye Amido Black 10B Adsorption

Article Preview

Abstract:

Magnetic chitosan nanoparticles (Fe3O4-CS MNPs) were synthesized by an improved one-pot hydrothermal method and applied for azo dye amido black 10B adsorption. The Fe3O4-CS MNPs were characterized by SEM, TEM, DLS, XRD, FTIR, TGA and VSM. The adsorptive behavior of amido black 10B on Fe3O4-CS MNPs was investigated using the UV-vis specteophotometric technique and the affecting parameters including solution pH, contact time, amido black 10B concentration and Fe3O4-CS MNPs amount were examined. The adsorption process followed the pseudo-second-order kinetic model. The adsorption equilibrium data fitted well with the Freundlich isotherm model with the saturated adsorption capacity of 124.8 mg/g at pH=2.0. The desorption experiment could be carried out using NaOH with the recovery of 91.78%. After five cycles, adsorption efficiency still reached 83.24%. The results showed that Fe3O4-CS MNPs possessed a simple synthesis route and excellent reusability, which have potential application in the adsorption of azo dye in environmental effluents.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

149-162

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Robati, B. Mirza, M. Rajabi, O. Moradi, I. Tyagi, S. Agarwal, V. K. Gupta, Removal of hazardous dyes-BR 12 and methyl orange using graphene oxide as an adsorbent from aqueous phase, Chem. Eng. J., 284 (2016) 687-697.

DOI: 10.1016/j.cej.2015.08.131

Google Scholar

[2] A. Stolz, Basic and applied aspects in the microbial degradation of azo dyes, Appl. Microbiol. Biotechnol., 56 (2001) 69-80.

Google Scholar

[3] W. H. Cliffe, The life and times of Peter Griess, J. Soc. Dyers. Colour., 75 (1959) 278-285.

DOI: 10.1111/j.1478-4408.1959.tb02325.x

Google Scholar

[4] M. Neamtu, A. Yediler, I. Siminiceanu, A. Kettrup, Oxidation of commercial reactive azo dye aqueous solutions by the photo-Fenton and Fenton-like processes, J. Photoch. Photobio. A. Chemistry, 161 (2003) 87-93.

DOI: 10.1016/s1010-6030(03)00270-3

Google Scholar

[5] A. B. Chen, Y. T. Li, Y. F. Yu, Y. Q. Li, K. C. Xia, Y. Y. Wang, S. H. Li, Synthesis of mesoporous carbon nanospheres for highly efficient adsorption of bulky dye molecules, J. Mater. Sci., 51 (2016) 7016-7028.

DOI: 10.1007/s10853-016-9991-7

Google Scholar

[6] A. Pandey, P. Singh, L. Iyengar, Bacterial decolorization and degradation of azo dyes, Int. Biodeter. Biodegr., 59 (2006) 73-84.

DOI: 10.1016/j.ibiod.2006.08.006

Google Scholar

[7] T. H. Kim, C. Park, J. Yang, S. Kim, Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation, J. Hazard. Mater. B., 112 (2004) 95-103.

DOI: 10.1016/j.jhazmat.2004.04.008

Google Scholar

[8] A. M. Wang, J. H. Qu, J. Ru, H. J. Liu, J. T. Ge, Mineralization of an azo dye Acid Red 14 by electro-Fenton's reagent using an activated carbon fiber cathode, Dyes and Pigments, 65 (2005) 227-233.

DOI: 10.1016/j.dyepig.2004.07.019

Google Scholar

[9] Z. Y. Zhang, L. Moghaddam, I. M. O'Hara, W. O. S. Doherty, Congo Red adsorption by ball-milled sugarcane bagasse, Chem. Eng. J., 178 (2011) 122-128.

DOI: 10.1016/j.cej.2011.10.024

Google Scholar

[10] A. Mittal, V. Gajbe, J. Mittal, Removal and recovery of the hazardous azo dye acid orange 7 through adsorption over waste materials: bottom ash and de-oiled soya, Ind. Eng. Chem. Res., 45 (2006) 1446-1453.

DOI: 10.1021/ie051111f

Google Scholar

[11] J. Z. Wang, G. H. Zhao, L. Y. Jing, X. M. Peng, Y. F. Li, Facile self-assembly of magnetite nanoparticles on three-dimensional graphene oxide–chitosan composite for lipase immobilization, Biochem. Eng. J., 98 (2015) 75-83.

DOI: 10.1016/j.bej.2014.11.013

Google Scholar

[12] P. Xu, G. M. Zeng, D. L. Huang, C. L. Feng, S. Hu, M. H. Zhao, C. Lai, Z. Wei, C. Huang, G. X. Xie, Z. F. Liu, Use of iron oxide nanomaterials in wastewater treatment: A review, Sci. Total. Environ., 424 (2012) 1-10.

DOI: 10.1016/j.scitotenv.2012.02.023

Google Scholar

[13] Y. Cheng, R. Q. Tan, W. Y. Wang, Y. Q. Guo, P. Cui, W. J. Song, Controllable synthesis and magnetic properties of Fe3O4 and Fe3O4@SiO2 microspheres. J. Mater. Sci., 45 (2010) 5347-5352.

DOI: 10.1007/s10853-010-4583-4

Google Scholar

[14] L. G. Chen, T. Wang and J. Tong, Application of derivatized magnetic materials to the separation and the preconcentration of pollutants in water samples, Trend. Anal. Chem., 30 (2011) 1095-1108.

DOI: 10.1016/j.trac.2011.02.013

Google Scholar

[15] Y. H. Yang, J. H. Yang, M. T. Zheng, C. F. Hu, S. Z. Tan, Y. Xiao, Q. Yang, Y. L. Liu, One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan, Chem. Commum. , 48 (2012) 380-382.

DOI: 10.1039/c1cc15678k

Google Scholar

[16] D. K. Kim, Y. Zhang, W. Voit, K.V. Rao, M. Muhammed, Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles, J. Magn. Magn. Mater., 225 (2001) 30-36.

DOI: 10.1016/s0304-8853(00)01224-5

Google Scholar

[17] C. H. Cao, L. Xiao, C. H Chen, X. Q. Shi, Q. H. Cao, L. Gao, In situ preparation of magnetic Fe3O4/chitosan nanoparticles via a novel reduction-precipitation method and their application in adsorption of reactive azo dye, Powder. Technol., 260 (2014).

DOI: 10.1016/j.powtec.2014.03.025

Google Scholar

[18] J. R. Gao, W. Wei, M. J. Shi, H. K. Han, J. W. Lu, J. M. Xie, A controlled solvethermal approach to synthesize nanocrystalline iron oxide for congo red adsorptive removal from aqueous solutions, J. Mater. Sci., 51 (2016) 4481-4494.

DOI: 10.1007/s10853-016-9760-7

Google Scholar

[19] H. Yang, B. Yuan, Y. B. Lu, R. S. Cheng, Preparation of magnetic chitosan microspheres and its applications in wastewater treatment, Sci. China. Ser B. Chem., 52 (2009) 249-256.

DOI: 10.1007/s11426-008-0109-1

Google Scholar

[20] Y. R. Zhang, S. L. Zhang, S. Q. Wang, J. Huang, P. Su, Q. R. Wang, B. X. Zhao, A dual function magnetic nanomaterial modified with lysine for removal of organic dyes from water solution, Chem. Eng. J., 239 (2013) 250-256.

DOI: 10.1016/j.cej.2013.11.022

Google Scholar

[21] S. Y. Kim , S. H. Kwon , Y. D. Liu , J. S. Lee, C. Y. You, H. J. Choi, Core-shell-structured cross-linked poly(glycidyl methacrylate)-coated carbonyl iron microspheres and their magnetorheology, J. Mater. Sci., 49 (2014) 1345-1352.

DOI: 10.1007/s10853-013-7818-3

Google Scholar

[22] G. L. Huang , C. Yang , K. Zhang , J. Shi, Adsorptive removal of copper ions from aqueous solution using cross-linked magnetic chitosan beads, Chin. J. Chem. Eng., 17 (2009) 960-966.

DOI: 10.1016/s1004-9541(08)60303-1

Google Scholar

[23] E. E. Hassan, R. C. Parish, J. M. Gallo, Optimized formulation of mangetic chitosan microspheres containing the anticancer agent, oxantrazole, Pharm. Res-Dordr., 9 (1992) 390-397.

Google Scholar

[24] Z. Jia, Y. J. Wang, Y. C. Lu, J. Y. Ma, G. S. Luo, In situ preparation of magnetic chitosan/Fe3O4composite nanoparticles in tiny pools of water-in-oil microemulsion, React. Funct. Polym., 66 (2006) 1552-1558.

DOI: 10.1016/j.reactfunctpolym.2006.05.006

Google Scholar

[25] Z. K. Zhou, F. H. Jiang, T. C. Lee, T. L. Yue, Two-step preparation of nano-scaled magnetic chitosan particles using Triton X-100 reversed-phase water-in-oil microemulsion system, J. Alloy. Compd., 581 (2013) 843-848.

DOI: 10.1016/j.jallcom.2013.07.207

Google Scholar

[26] L. M. Zhou, J. Y. Jin, Z. R. Liu, X. Z. Liang, C. Shang, Adsorption of acid dyes from aqueous solutions by the ethylenediamine-modified magnetic chitosan nanoparticles, J. Hazard. Mater., 185 (2011) 1045-1052.

DOI: 10.1016/j.jhazmat.2010.10.012

Google Scholar

[27] W. Ma, F. Q. Ya, M. Han, R. Wang, Characteristics of equilibrium, kinetics studies for adsorption of fluoride on magnetic-chitosan particle, J. Hazard. Mater., 143 (2006) 296-302.

DOI: 10.1016/j.jhazmat.2006.09.032

Google Scholar

[28] W. Zhang, S. Y. Jia, Q. Wu, S. H. Wu, J. Y. Ran, Y. Liu and J. W. Hou, Studies of the magneticfield intensity on the synthesis of chitosan-coated magnetite nanocomposites by co-precipitation method, Mat. Sci. Eng. C. Mater., 32 (2012) 381-384.

DOI: 10.1016/j.msec.2011.11.010

Google Scholar

[29] A. Afkhami, R. Moosavi, Adsorptive removal of congo red, a carcinogenic textile dye, from aqueous solutions by maghemite nanoparticles, J. Hazard. Mater., 174 (2010) 398-403.

DOI: 10.1016/j.jhazmat.2009.09.066

Google Scholar

[30] W. Jiang, W. F. Wang, B. C. Pan, Q. X. Zhang, W. M. Zhang, L. Lv, Facile fabrication of magnetic chitosan beads of fast kinetics and high capacity for copper removal, ACS. Appl. Mater. Interfaces, 6 (2014) 3421-3426.

DOI: 10.1021/am405562c

Google Scholar

[31] R. H. Wu, J. H. Liu, L. Q. Zhao, X. L. Zhang, J. R. Xie, B. W. Yu, X. L. Ma, S. T. Yang, H. F. Wang, Y. F. Liu, Hydrothermal preparation of magnetic Fe3O4@C nanoparticles for dye adsorption, J. Environ. Chem. Eng., 2 (2014) 907-913.

DOI: 10.1016/j.jece.2014.02.005

Google Scholar

[32] A. Mittal, V. Thakur, V. Gajbe, Adsorptive removal of toxic azo dye amido black 10B by hen feather, Environ. Sci. Pollut. Res., 20 (2013) 260-269.

DOI: 10.1007/s11356-012-0843-y

Google Scholar

[33] W. Song, B. Y. Gao, X. Xu, L. L. Xing, S. Shuang, P. J. Duan, W. C. Song, R. B. Jia, Adsorption-desorption behavior of magnetic amine/Fe3O4 functionalized biopolymer resin towards anionic dyes from wastewater, Bioresource. Technol., 210 (2016).

DOI: 10.1016/j.biortech.2016.01.078

Google Scholar

[34] M. M. Beppu, C. C. Santana, Influence of calcification solution on in vitro chitosan mineralization, Mater. Res., 5 (2002) 47-50.

DOI: 10.1590/s1516-14392002000100008

Google Scholar

[35] H. Y. Zhu, R. Jiang, L. Xiao, W. Li, A novel magnetically separableγ-Fe2O3/crosslinked chitosan adsorbent: Preparation, characterization and adsorption application for removal of hazardous azo dye, J. Hazard. Mater., 179 (2010) 251-257.

DOI: 10.1016/j.jhazmat.2010.02.087

Google Scholar

[36] I. Langmuir The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc., 40 (1918) 1361-1403.

DOI: 10.1021/ja02242a004

Google Scholar

[37] 37.H. Bouyarmane, S. E. Asri, A. Rami, C. Roux, M. A. Mahly, A. Saoiabi, T. Coradin, A. Laghzizil, Pyridine and phenol removal using natural and synthetic apatites as low cost sorbents: Influence of porosity and surface interactions, J. Hazard. Mater., 181 (2010).

DOI: 10.1016/j.jhazmat.2010.05.074

Google Scholar

[38] C. W. Cheung, J. F. Porter and G. Mckay, Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char, Water. Res., 35 (2001) 605-612.

DOI: 10.1016/s0043-1354(00)00306-7

Google Scholar

[39] Y. S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process. Biochem., 34 (1999) 451-465.

DOI: 10.1016/s0032-9592(98)00112-5

Google Scholar

[40] W. H. Cheung, Y. S. Szeto, G. McKay, Intraparticle diffusion processes during acid dye adsorption onto chitosan, Bioresource. Technol., 98 (2007) 2897-2904.

DOI: 10.1016/j.biortech.2006.09.045

Google Scholar

[41] B. Ramalingam, M. M. R. Khan, B. Mondal, A. B. Mandal, S. K. Das, Facile synthesis of silver nanoparticles decorated magnetic Chitosan microsphere for efficient removal of dyes and microbial contaminants, ACS. Sustainanle Chem. Eng., 3 (2015).

DOI: 10.1021/acssuschemeng.5b00577

Google Scholar