Evolution of Optical and Structural Properties of Silicon Nanocrystals Embedded in Silicon Nitride Films with Annealing Temperature

Article Preview

Abstract:

In this work, Hydrogenated silicon rich nitride (SRN) films were deposited by varying NH3/SiH4 ratio and thermally annealed within the temperature range of 700-1000 °C in N2 ambient to precipitate silicon nanocrystals in the film. The optical and structural properties of SiNx:H films were studied. Chemical composition and structural investigations were performed by Secondary ion mass spectrometry (SIMS), Infrared and Raman spectrometry experiments.Fourier Transform Infrared Spectroscopy (FTIR) indicates a new band which appeared as a “shoulder” in the 850-900 cm−1 range and is attributed to a reordering in the films towards an increased SiN4 bonding configuration resulting from the precipitation of silicon nanocrystals.The Raman analysis clearly evidences a high density of Si nanoclusters as shown by the broadened and asymmetric Raman peak approaching 520 cm-1.Strong visible photoluminescence (PL) can be observed in silicon nitride and the evolution of the photoluminescence with annealing temperature is correlated to the evolution of the structure. Radiative defects in the films and the quantum confinement effect in silicon nanoparticles were proposed to explain the origin of light emission from the samples.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

163-173

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. A. Belyakov, V. A. Burdov, R. Lockwood, and A. Meldrum, Silicon Nanocrystals: Fundamental Theory and Implications for Stimulated Emission, Adv. Opt. Technol. 2008, (2008) 279502.

DOI: 10.1155/2008/279502

Google Scholar

[2] M. Carrada, A. Zerga, M. Amann, J.J. Grob, J.P. Stoquert, A. Slaoui, C. Bonafos, S. Schamm, Structural and optical properties of high density Si-ncs synthesized in SiNx: H by remote PECVD and annealing, Mat. Sci. Eng. B 147 (2008) 218.

DOI: 10.1016/j.mseb.2007.09.042

Google Scholar

[3] F. Delachat, M. Carrada, G. Ferblantier, J. -J. Grob, A. Slaoui, Properties of silicon nanoparticles embedded in SiNx deposited by microwave-PECVD, Nanotechnology 20 (2009) 4156088.

DOI: 10.1088/0957-4484/20/41/415608

Google Scholar

[4] L.V. Mercaldo, P.D. Veneri, E. Esposito, E. Massera, I. Usatii, C. Privato, Structural and optical properties of silicon quantum dots in silicon nitride grown in situ by PECVD using different gas precursors Mater. Sci. Eng. B 159–160 (2009) 74.

DOI: 10.1016/j.mseb.2008.11.049

Google Scholar

[5] Y.Q. Wang, Y.G. Wang, L. Cao, Z.X. Cao, High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride, Appl. Phys. Lett. 83 (2003) 3474.

DOI: 10.1063/1.1621462

Google Scholar

[6] H.L. Hao, L.K. Wu, W.Z. Shen, H.F.W. Dekkers, Origin of visible luminescence in hydrogenated amorphous silicon nitride, Appl. Phys. Lett. 91 (2007) 201922.

DOI: 10.1063/1.2814053

Google Scholar

[7] G. Franzo, F. Iacona, V. Vinciguerra, and F. Priolo, Enhanced rare-earth luminescence in silicon nanocrystals, Mater. Sci. Eng. B, vol. 69/70, (1999) 338.

DOI: 10.1016/s0921-5107(99)00406-7

Google Scholar

[8] N. M. Park, C. J. Choi, T. Y. Seong, and S. J. Park, Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride, Phys. Rev. Lett., vol. 86, (2001) 1355.

DOI: 10.1103/physrevlett.86.1355

Google Scholar

[9] L. Dal Negro, J. H. Yi, V. Nguyen, Y. Yi, J. Michel, and L. C. Kimerling, Spectrally enhanced light emission from aperiodic photonic structures, Appl. Phys. Lett., vol. 86, (2005) 261905.

DOI: 10.1063/1.1954897

Google Scholar

[10] L. Dal Negro, J. H. Yi, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, Light emission from silicon-rich nitride nanostructures, Appl. Phys. Lett., vol. 88, (2006) 183103.

DOI: 10.1063/1.2191956

Google Scholar

[11] Z. Pei, Y.R. Chang, H. L Hwang, Nitride (a-SiNI: H) Layers prepared by PECVD method, The Electrochemical Society, Pennington (1999) 474.

Google Scholar

[12] T. Shimizu-Iwayama, S. Nakao, K. Saitoh, Visible photoluminescence in Si+‐implanted thermal oxide films on crystalline Si, Appl. Phys. Lett. 65 (1994) 1814.

DOI: 10.1063/1.112852

Google Scholar

[13] L. Patrone, D. Nelson,V. Safarov,M. Sentis,W. Marine, Size dependent photoluminescence from Si nanoclusters produced by laser ablation, J. Lumin. 80 (1998) 217.

DOI: 10.1016/s0022-2313(98)00101-x

Google Scholar

[14] O. Jambois, H. Rinnert, X. Devaux, M. Vergnat, Influence of the annealing treatments on the luminescence properties of SiO∕SiO2 SiO∕SiO2 multilayers, J. Appl. Phys. 100 (2006) 123504.

DOI: 10.1063/1.2402976

Google Scholar

[15] Y.J. Park, T.K. Lee, C.H. Lee, E.K. Kim, Optical properties of multilayer SiNx/SiNy structures prepared by PECVD, J. KoreanPhys. Soc. 44. 3 (2004) 700.

Google Scholar

[16] E. D. Palik, Handbook of Optical Constants of Solids Academic, New York, 1985, 578 and 774.

Google Scholar

[17] A. -S. Keita, A. En Naciri, F. Delachat, M. Carrada, G. Ferblantier, and A. Slaoui. Spectroscopic ellipsometry investigation of the optical properties of nanostructured Si/SiNx films. J. Appl. Phys, 107, (2010) 093516.

DOI: 10.1063/1.3331551

Google Scholar

[18] M. Molinari, H. Rinnert, M. Vergnat Correlation between structure and photoluminescence In amorphous hydrogenated silicon nitride alloys, Physica E 16 (2003) 445.

DOI: 10.1016/s1386-9477(02)00629-x

Google Scholar

[19] F. Giorgis, F. Giuliani, C.F. Pirri, E. Tresso, C. Summonte, R. Rizzoli, R. Galloni, A. Desalvo, P. Rava, Optical, structural and electrical properties of device-quality hydrogenated amorphous silicon-nitrogen films deposited by plasma-enhanced chemical vapour deposition, Philos. Mag. B 77 (1998).

DOI: 10.1080/13642819808206395

Google Scholar

[20] G. Lucovsky, J. Yang, S. S. Chao, J. E. Tyler, W. Czubatyj, Nitrogen-bonding environments in glow-discharge deposited a−Si: H films, Phys. Rev. B. 28 (1983) 3234.

DOI: 10.1103/physrevb.28.3225

Google Scholar

[21] G. Scardera, T. Puzzer, G. Conibeer, and M. A. Green, Fourier transform infrared spectroscopy of annealed silicon-rich silicon nitride thin films J. Appl. Phys. 104, (2008) 104310.

DOI: 10.1063/1.3021158

Google Scholar

[22] S. Hasegawa, H. Anbutsu, and Y. Kurata, Connection between Si–N and Si–H vibrational properties in amorphous SiNx: H films, Philos. Mag. B. 59 (1989) 365.

DOI: 10.1080/13642818908220184

Google Scholar

[23] E. Bustarret, M. Besouda, M.C. Habrard, J. Bruyère, S. Poulin, S.C. Gujrathi, Configurational statistics in a-SixNyHz alloys: A quantitative bonding analysis, Phys. Rev. B. 38 (1988) 8171.

Google Scholar

[24] L. Huang, KW. Hipps, JT. Dickinson, U. Mazur, XD. Wang, Structure and Composition Studies of Silicon Nitride Thin Films Deposited by Single Ion Beam Sputter Deposition, Thin Solid Films 299 (1997) 104.

DOI: 10.1016/s0040-6090(96)09446-1

Google Scholar

[25] L.V. Mercalo, E.M. Esposito, P.D. Veneri, G. Fameli, First and second-order Raman scattering in Si nanostructures within silicon nitride, Appl. Phys. Lett. 97, (2010) 153112.

DOI: 10.1063/1.3501133

Google Scholar

[26] ] A. Kshiragar, P. Nyaupane, D. Bodas, S.P. Duttagupta, S.A. Gangal, Deposition and characterization of low temperature silicon nitride films deposited by inductively coupled plasma CVD, Appl. Surf. Sci. 257(2011) 5052.

DOI: 10.1016/j.apsusc.2011.01.020

Google Scholar

[27] F. Komarov, L. Vlasukova, I. Parkhomenko, O. Milchanina, A. Mudryi, A. Togambaeva, O. Korolik, Raman study of light-emitting SiN x films grown on Si by low-pressure chemical vapor deposition, Thin Solid Films 579 (2015) 110.

DOI: 10.1016/j.tsf.2015.03.003

Google Scholar

[28] O. Debieu, R. P. Nalini, J. Cardin, X. Portier, J. Perrière and F. Gourbilleau, Structural and optical characterization of pure Si-rich nitride thin films, Nanoscale Research Letters 8 (2013) 31.

DOI: 10.1186/1556-276x-8-31

Google Scholar

[29] G. Scardera, T. Puzzer, I. Perez-Wurfl, G. Conibeer, The effects of annealing temperature on the photoluminescence from silicon nitride multilayer structures, J. Cryst. Growth 310 (2008) 680.

DOI: 10.1016/j.jcrysgro.2008.05.018

Google Scholar

[30] G. -R. Lin, C. -J. Lin, C. -K. Lin, L. -J. Chou, and Y. -L. Chueh, Oxygen defect and Si nanocrystal dependent white light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition grown Si rich SiO2, J. Appl. Phys. 97, (2005).

DOI: 10.1063/1.1886274

Google Scholar

[31] M. Wang, D. Li, Z. Yuan, D. Yang, and D. Que, Photoluminescence of Si-rich silicon nitride: Defect-related states and silicon nanoclusters, Appl. Phys. Lett. 90, (2007) 131903.

DOI: 10.1063/1.2717014

Google Scholar

[32] J. Kistner, X. Chen, Y. Weng, H. P. Strunk, M. B. Schubert, and J. H. Werner, Photoluminescence from silicon nitride, J. Appl. Phys. 110, (2011) 023520.

DOI: 10.1063/1.3607975

Google Scholar

[33] S.V. Desphande, E. Gulari, S.W. Brown, S.C. Rand, Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition, J. Appl. Phys. 77 (1995) 6534.

DOI: 10.1063/1.359062

Google Scholar

[34] J. Robertson, Electronic Structure of Defects in Amorphous Silicon Nitride. Mater. Res. Sot. Symp. Proc. 284, (1992) 65.

Google Scholar

[35] B.H. Kim, C.H. Cho, T.W. Kim, N.M. Park, G.Y. Sung, S.J. Park, Photoluminescence of silicon quantum dots in silicon nitride grown by NH3 and SiH4, Appl. Phys. Lett. 86 (2005) 091908.

DOI: 10.1063/1.1872211

Google Scholar

[36] M. Molinari, H. Rinnert, M. Vergnat, Visible photoluminescence in amorphous SiNx thin films prepared by reactive evaporation, Appl. Phys. Lett. 77 (2000) 3499.

DOI: 10.1063/1.1329163

Google Scholar

[37] M. Molinari, H. Rinnert and M. Vergnat, Effects of the amorphous-crystalline transition on the luminescence of quantum confined silicon nanoclusters, Europhys. Lett., 66 (5), (2004) 674.

DOI: 10.1209/epl/i2003-10256-2

Google Scholar

[38] M. Molinari, H. Rinnert, M. Vergnat, Evolution with the annealing treatments of the photoluminescence mechanisms in a-SiNx: H alloys prepared by reactive evaporation, J. Appl. Phys. 101 (2007) 123532.

DOI: 10.1063/1.2749283

Google Scholar

[39] A. Benami, G. Santana, A. Ortiz, A. Ponce, D. Romeu, J. Aguilar-Hernandez, G. Contreras-Puente, J.C. Alonso, Strong white and blue photoluminescence from silicon nanocrystals in SiNx grown by remote PECVD using SiCl4/NH3, Nanotechnology 18 (2007).

DOI: 10.1088/0957-4484/18/15/155704

Google Scholar