Design and Electronic Characterization of Bio-Molecular QCA: A First Principle Approach

Article Preview

Abstract:

Molecular Quantum-dot Cellular Automata is the most promising and challenging technology nowadays for its high operating frequency, extremely high device density and non-cryogenic working temperature. In this paper, we report a First Principle approach based on analytical model of 3-dot Bio Molecular Quantum-dot Cellular Automata. The device is 19.62Å long and this bio molecular Quantum dot Cell has been made with two Adenine Nucleotide bio-molecules along with one Carbazole and one Thiol group. This whole molecular structure is supported onto Gold substrate. In this paper, two Adenine Nucleotides act as two quantum dots and Carbazole acts as another dot. These 3-Quantum-dots are mounted in a tree like structure supported with Thiol group. This model has been demonstrated with Extended Hückel Theory based semi-empirical method. The quantum ballistic transmission and HOMO-LUMO plot support the polarization state change. This state changing ability has been observed for this molecular device. Therefore, this property has been investigated and reported in this paper. HOMO-LUMO plot shows the two logic states along with null state for this 3-dots system. This phenomenon illustrates how the charge transfers take place. Two polarization states along with one additional null state have been obtained for this bio molecular nano device. This molecular device has been operated with 1000THz frequency. This nanoscale design approach will initiate one step towards the modeling of high frequency bio molecular Quantum dot Cell at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

202-214

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.D. Guo, X.H. Yan, Y. Xiao, Computational Investigation of DNA Detection Using Single-Electron Transistor-Based Nanopore, J. Phys. Chem. C, Vol. 116(40), 21609-21614(2012).

DOI: 10.1021/jp305909p

Google Scholar

[2] B. Yang, R. Dong, X. Yan , Q. Shi, Recognizing nucleosides with transverse electronic transport via perpendicular direction of base planes for DNA sequencing, Nanoscale Research Letters, Vol. 7(1), 512, (2012).

DOI: 10.1186/1556-276x-7-512

Google Scholar

[3] Q. Zhao, Y. Wang, J. Dong, L. Zhao, X.F. Rui, D. Yu, Nanopore-Based DNA Analysis via Graphene Electrodes, Journal of Nanomaterials, Vol. 2012, 318950, (2012).

DOI: 10.1155/2012/318950

Google Scholar

[4] H. Liu, G. Li, H. Ai, J. Li, Y. Bu Electronic Enhancement Effect of Copper Modification of Base Pairs on the Conductivity of DNA, The Journal of Physical Chemistry C, Vol. 115(45), 22547-22556 , (2011).

DOI: 10.1021/jp2070198

Google Scholar

[5] H. Liu, G. Li, L. Zhang, J. Li, M. Wang , Y. Bu, Electronic promotion effect of double proton transfer on conduction of DNA through improvement of transverse electronic communication of base pairs, Journal of Chemical Physics, Vol. 135(13), 134315 , (2011).

DOI: 10.1063/1.3646308

Google Scholar

[6] V.M.K. Bagci & C.C. Kaun, Recognizing nucleotides by cross-tunneling currents for DNA sequencing, Physical Review E, Vol. 84(1), 011917, (2011).

DOI: 10.1103/physreve.84.011917

Google Scholar

[7] K. K. Saha, M. Drndic, B. K. Nikolic, DNA Base-Specific Modulation of Microampere Transverse Edge Currents through a Metallic Graphene Nanoribbon with a Nanopore, Nano Letters, Vol. 12(1), 50-55arXiv: 1108. 3801v1 [cond-mat. mes-hall], (2012).

DOI: 10.1021/nl202870y

Google Scholar

[8] F. P. O. Yang, S.L. Peng, H. Zhang, L.B. Weng , H. Xu, A biosensor based on graphene nanoribbon with nanopores: a first-principles devices-design, Chinese Physics B, Vol. 20(5), 058504, (2011).

DOI: 10.1088/1674-1056/20/5/058504

Google Scholar

[9] A. Staykov, Y. Tsuji, K. Yoshizawa, Conductance through Short DNA Molecules, The Journal of Physical Chemistry C, Vol. 115(8), 3481-3490, (2011).

DOI: 10.1021/jp110803a

Google Scholar

[10] W. Su, R. Dong, X. Yan, H. Wang, H. Liu, Current Distance Response for Rapid DNA Sequencing, Journal of Computational and Theoretical Nanoscience, Vol. 7, 1885-1888, (2010).

DOI: 10.1166/jctn.2010.1554

Google Scholar

[11] X. F. Li, H. Ren, L. L. Wang, K.Q. Cheng, J. Yang , Y. Luo, Important Structural Factors Controlling the Conductance of DNA Pairs in Molecular Junctions, The Journal of Physical Chemistry C, Vol. 114(33), 14240-14242 , (2010).

DOI: 10.1021/jp100798g

Google Scholar

[12] M. Tabe, D. Moraru, E. Hamid, A. Samanta, L. T. Anh, T. Mizuno, H. Mizuta, Dopant-Atom-Based Tunnel SOI-MOSFETs, ECS Transactions, Vol. 58(9), 89-95, (2013).

DOI: 10.1149/05809.0089ecst

Google Scholar

[13] W. Yang, L. H. Wang, Y. Geng, Q. Q. Sun, P. Zhou, S. J. Ding , D. W. Zhang, Atomic scale investigations of the gate controlled tunneling effect in graphyne nanoribbon, Journal of Applied Physics, Vol. 114(22), 224311, (2013).

DOI: 10.1063/1.4836876

Google Scholar

[14] A. Pulimeno, M. Graziano, A. Sanginario, V. Cauda, D. Demarchi, G. Piccinini, Bis-Ferrocene Molecular QCA Wire: Ab Initio Simulations of Fabrication Driven Fault Tolerance, IEEE Transactions on nanotechnology, Vol. 12(4), 498-507, (2013).

DOI: 10.1109/tnano.2013.2261824

Google Scholar

[15] K. Das and D. De, A study on diverse nanostructure for implementing logic gate design for QCA, Int. J. Nanosci. 10, 263 (2011).

DOI: 10.1142/s0219581x11007892

Google Scholar

[16] K. Das and D. De,  'Characterization, test and logic synthesis of novel conservative and reversible logic gates for QCA, Int. J. Nanosci. 09, 201 (2010).

DOI: 10.1142/s0219581x10006594

Google Scholar

[17] A novel approach of And-Or-Inverter (AOI) gate design for QCA, Computers and Devices for Communication, 2009. CODEC 2009. 4th International Conference on 14-16 Dec. (2009).

Google Scholar

[18] Y. Lu, M. Liu, C. Lent, Molecular quantum-dot cellular automata: From molecular structure to circuit dynamics, Journal of applied physics, Vol. 102 (3), 034311, (2007).

DOI: 10.1063/1.2767382

Google Scholar

[19] G. A. Dilabio, R. A. Wolkow, J. L. Pitters, G. Piva, Atomistic Quantum Dots, US 2015/0060771 A1, (2015).

Google Scholar

[20] C. S. Lent, P. D. Tougaw, W. Porod, Quantum cellular automata: The physics of computing with arrays of quantum dot molecules, in Proc. IEEE Physcomp, 5–13. (1994).

DOI: 10.1109/phycmp.1994.363705

Google Scholar

[21] C. S. Lent, P. D. Tougaw, W. Porod, G. Bernstein, Quantum cellular automata, Nanotechnology, vol. 4, 49–57, (1994).

DOI: 10.1088/0957-4484/4/1/004

Google Scholar

[22] C. S. Lent, B. Isaksen, M. Lieberman, Molecular quantum-dot cellular automata, J. Amer. Chem. Soc., Vol. 125, 1056–1063, (2003).

DOI: 10.1021/ja026856g

Google Scholar

[23] Y. Lu , C. S. Lent, Theoretical study of molecular quantum-dot cellular automata, J. Comput. Electron., vol. 4, p.115–118, (2005).

DOI: 10.1007/s10825-005-7120-y

Google Scholar

[24] R. A. Joyce, H. Qi, T. P. Fehlner, C. S. Lent, A. O. Orlov, G. L. Snider, A system to demonstrate the bistability in molecules for application in a molecular QCA cell, in Proc. IEEE Nanotechnol. Mater. Dev. Conf., Jun. 2009, p.46–49.

DOI: 10.1109/nmdc.2009.5167543

Google Scholar

[25] P. N. Samanta, K. K. Das, Electron transport properties of zigzag single walled tin carbide Nanotubes, Computational material sciences, Vol. 81, 326-331, (2014).

DOI: 10.1016/j.commatsci.2013.08.035

Google Scholar

[26] B. Isaksen, C. S. Lent, Molecular Quantum-Dot Cellular Automata, in Proc. IEEE NANO Conf., 2003, Vol. 1, 5-8.

DOI: 10.1109/nano.2003.1231700

Google Scholar