[1]
Y.D. Guo, X.H. Yan, Y. Xiao, Computational Investigation of DNA Detection Using Single-Electron Transistor-Based Nanopore, J. Phys. Chem. C, Vol. 116(40), 21609-21614(2012).
DOI: 10.1021/jp305909p
Google Scholar
[2]
B. Yang, R. Dong, X. Yan , Q. Shi, Recognizing nucleosides with transverse electronic transport via perpendicular direction of base planes for DNA sequencing, Nanoscale Research Letters, Vol. 7(1), 512, (2012).
DOI: 10.1186/1556-276x-7-512
Google Scholar
[3]
Q. Zhao, Y. Wang, J. Dong, L. Zhao, X.F. Rui, D. Yu, Nanopore-Based DNA Analysis via Graphene Electrodes, Journal of Nanomaterials, Vol. 2012, 318950, (2012).
DOI: 10.1155/2012/318950
Google Scholar
[4]
H. Liu, G. Li, H. Ai, J. Li, Y. Bu Electronic Enhancement Effect of Copper Modification of Base Pairs on the Conductivity of DNA, The Journal of Physical Chemistry C, Vol. 115(45), 22547-22556 , (2011).
DOI: 10.1021/jp2070198
Google Scholar
[5]
H. Liu, G. Li, L. Zhang, J. Li, M. Wang , Y. Bu, Electronic promotion effect of double proton transfer on conduction of DNA through improvement of transverse electronic communication of base pairs, Journal of Chemical Physics, Vol. 135(13), 134315 , (2011).
DOI: 10.1063/1.3646308
Google Scholar
[6]
V.M.K. Bagci & C.C. Kaun, Recognizing nucleotides by cross-tunneling currents for DNA sequencing, Physical Review E, Vol. 84(1), 011917, (2011).
DOI: 10.1103/physreve.84.011917
Google Scholar
[7]
K. K. Saha, M. Drndic, B. K. Nikolic, DNA Base-Specific Modulation of Microampere Transverse Edge Currents through a Metallic Graphene Nanoribbon with a Nanopore, Nano Letters, Vol. 12(1), 50-55arXiv: 1108. 3801v1 [cond-mat. mes-hall], (2012).
DOI: 10.1021/nl202870y
Google Scholar
[8]
F. P. O. Yang, S.L. Peng, H. Zhang, L.B. Weng , H. Xu, A biosensor based on graphene nanoribbon with nanopores: a first-principles devices-design, Chinese Physics B, Vol. 20(5), 058504, (2011).
DOI: 10.1088/1674-1056/20/5/058504
Google Scholar
[9]
A. Staykov, Y. Tsuji, K. Yoshizawa, Conductance through Short DNA Molecules, The Journal of Physical Chemistry C, Vol. 115(8), 3481-3490, (2011).
DOI: 10.1021/jp110803a
Google Scholar
[10]
W. Su, R. Dong, X. Yan, H. Wang, H. Liu, Current Distance Response for Rapid DNA Sequencing, Journal of Computational and Theoretical Nanoscience, Vol. 7, 1885-1888, (2010).
DOI: 10.1166/jctn.2010.1554
Google Scholar
[11]
X. F. Li, H. Ren, L. L. Wang, K.Q. Cheng, J. Yang , Y. Luo, Important Structural Factors Controlling the Conductance of DNA Pairs in Molecular Junctions, The Journal of Physical Chemistry C, Vol. 114(33), 14240-14242 , (2010).
DOI: 10.1021/jp100798g
Google Scholar
[12]
M. Tabe, D. Moraru, E. Hamid, A. Samanta, L. T. Anh, T. Mizuno, H. Mizuta, Dopant-Atom-Based Tunnel SOI-MOSFETs, ECS Transactions, Vol. 58(9), 89-95, (2013).
DOI: 10.1149/05809.0089ecst
Google Scholar
[13]
W. Yang, L. H. Wang, Y. Geng, Q. Q. Sun, P. Zhou, S. J. Ding , D. W. Zhang, Atomic scale investigations of the gate controlled tunneling effect in graphyne nanoribbon, Journal of Applied Physics, Vol. 114(22), 224311, (2013).
DOI: 10.1063/1.4836876
Google Scholar
[14]
A. Pulimeno, M. Graziano, A. Sanginario, V. Cauda, D. Demarchi, G. Piccinini, Bis-Ferrocene Molecular QCA Wire: Ab Initio Simulations of Fabrication Driven Fault Tolerance, IEEE Transactions on nanotechnology, Vol. 12(4), 498-507, (2013).
DOI: 10.1109/tnano.2013.2261824
Google Scholar
[15]
K. Das and D. De, A study on diverse nanostructure for implementing logic gate design for QCA, Int. J. Nanosci. 10, 263 (2011).
DOI: 10.1142/s0219581x11007892
Google Scholar
[16]
K. Das and D. De, 'Characterization, test and logic synthesis of novel conservative and reversible logic gates for QCA, Int. J. Nanosci. 09, 201 (2010).
DOI: 10.1142/s0219581x10006594
Google Scholar
[17]
A novel approach of And-Or-Inverter (AOI) gate design for QCA, Computers and Devices for Communication, 2009. CODEC 2009. 4th International Conference on 14-16 Dec. (2009).
Google Scholar
[18]
Y. Lu, M. Liu, C. Lent, Molecular quantum-dot cellular automata: From molecular structure to circuit dynamics, Journal of applied physics, Vol. 102 (3), 034311, (2007).
DOI: 10.1063/1.2767382
Google Scholar
[19]
G. A. Dilabio, R. A. Wolkow, J. L. Pitters, G. Piva, Atomistic Quantum Dots, US 2015/0060771 A1, (2015).
Google Scholar
[20]
C. S. Lent, P. D. Tougaw, W. Porod, Quantum cellular automata: The physics of computing with arrays of quantum dot molecules, in Proc. IEEE Physcomp, 5–13. (1994).
DOI: 10.1109/phycmp.1994.363705
Google Scholar
[21]
C. S. Lent, P. D. Tougaw, W. Porod, G. Bernstein, Quantum cellular automata, Nanotechnology, vol. 4, 49–57, (1994).
DOI: 10.1088/0957-4484/4/1/004
Google Scholar
[22]
C. S. Lent, B. Isaksen, M. Lieberman, Molecular quantum-dot cellular automata, J. Amer. Chem. Soc., Vol. 125, 1056–1063, (2003).
DOI: 10.1021/ja026856g
Google Scholar
[23]
Y. Lu , C. S. Lent, Theoretical study of molecular quantum-dot cellular automata, J. Comput. Electron., vol. 4, p.115–118, (2005).
DOI: 10.1007/s10825-005-7120-y
Google Scholar
[24]
R. A. Joyce, H. Qi, T. P. Fehlner, C. S. Lent, A. O. Orlov, G. L. Snider, A system to demonstrate the bistability in molecules for application in a molecular QCA cell, in Proc. IEEE Nanotechnol. Mater. Dev. Conf., Jun. 2009, p.46–49.
DOI: 10.1109/nmdc.2009.5167543
Google Scholar
[25]
P. N. Samanta, K. K. Das, Electron transport properties of zigzag single walled tin carbide Nanotubes, Computational material sciences, Vol. 81, 326-331, (2014).
DOI: 10.1016/j.commatsci.2013.08.035
Google Scholar
[26]
B. Isaksen, C. S. Lent, Molecular Quantum-Dot Cellular Automata, in Proc. IEEE NANO Conf., 2003, Vol. 1, 5-8.
DOI: 10.1109/nano.2003.1231700
Google Scholar