Laser Controlled Dynamic Self-Assembly of Nanostructure

Article Preview

Abstract:

This paper presents a three-dimensional dynamic model of laser controlled dynamic self-assembly of nanostructure. A phase field model is employed to study the surface fabrication of silicon which is induced by the laser. The mechanism of the surface fabrication is that the heating effect enhances surface diffusion mobility results in atoms outward flow. The computational model systematically integrate for high reliability of the whole analysis, the experimental and simulated measurements have been quantitatively investigated. A semi-implicit Fourier spectral scheme is applied for high efficiency and numerical stability. The performed simulations suggest a substantial potential of the presented model, which provides a reliable technology of nanostructure fabrications on the surface of silicon.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

225-231

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Bonse, A. Rosenfeld and J. Kruger, Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures, Appl. Surf. Sci., Vol. 257, 2011, pp.5420-5423.

DOI: 10.1016/j.apsusc.2010.11.059

Google Scholar

[2] J.T. Zhu, G. Yin, M. Zhao, D.Y. Chen and L. Zhao, Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations, Appl. Surf. Sci., Vol. 245, 2005, pp.102-108.

DOI: 10.1016/j.apsusc.2004.09.113

Google Scholar

[3] M.S. Trtica and B.A. Gakovic, Pulsed TEA CO2 laser surface modifications of silicon, Appl. Surf. Sci., Vol. 205, 2003, pp.336-342.

DOI: 10.1016/s0169-4332(02)01156-x

Google Scholar

[4] A. Rosenfeld, M. Rohloff, S. Hohm, J. Kruger and J. Bonse, Formation of laser-induced periodic surface structures on fused silica upon multiple parallel polarized double-femtosecond-laser-pulse irradiation sequences, Appl. Surf. Sci., Vol. 258, 2012, pp.9233-9236.

DOI: 10.1016/j.apsusc.2011.09.076

Google Scholar

[5] D.Q. Yang, E. Sacher and M. Meunier, The early stages of silicon surface damage induced by pulsed CO2 laser radiation: an AFM study, Appl. Surf. Sci., Vol. 222, 2004, pp.365-373.

DOI: 10.1016/j.apsusc.2003.09.025

Google Scholar

[6] B. Tan and K. Venkatakrishnan, A femtosecond laser-induced periodical surface structure on crystalline silicon, J. Micromech. Microeng., Vol. 16, 2006, pp.1080-1085.

DOI: 10.1088/0960-1317/16/5/029

Google Scholar

[7] S.Y. Liu, J.T. Zhu, Y. Liu and L. Zhao, Laser induced plasma in the formation of surface-microstructured silicon, Mater. Lett., Vol. 62, 2008, pp.3881-3883.

DOI: 10.1016/j.matlet.2008.05.012

Google Scholar

[8] D. Lingenfelser and P. Hess, Laser-induced thermal desorption mass spectrometry of functionalized silicon surfaces, Appl. Surf. Sci., Vol. 253, 2007, pp.7749-7754.

DOI: 10.1016/j.apsusc.2007.02.169

Google Scholar

[9] A.J. Heltzel, S. Theppakuttai, J.R. Howell and S.C. Chen, Analytical and experimental investigation of laser-microsphere interaction for nanoscale surface modification, J. Heat. Trans. - T. Asme, Vol. 127, 2005, pp.1231-1235.

DOI: 10.1115/1.2039110

Google Scholar

[10] J.W. Cahn, Free energy of a nonuniform system. 1. Interfacial free energy, J. Chem. Phys., Vol. 28, 1958, pp.258-267.

DOI: 10.1063/1.1744102

Google Scholar

[11] L.Q. Chen, Phase-field models for microstructure evolution, Annu. Rev. Mater. Res., Vol. 32, 2002, pp.113-140.

Google Scholar

[12] V. Popa-Nita and P. Oswald, Phase-field model for front propagation in a temperature gradient: Selection and competition between the correlation and the thermal lengths, Phys. Rev. E, Vol. 66, 2002, p.066117.

DOI: 10.1103/physreve.66.066117

Google Scholar

[13] J.Y. Degorce, J.N. Gillet, F. Magny and M. Meunier, Three-dimensional transient temperature field model for laser annealing, J. Appl. Phys., Vol. 97, 2005, p.033520.

DOI: 10.1063/1.1846943

Google Scholar

[14] V.V. Semak and M.N. Shneider, Effect of power losses on self-focusing of high-intensity laser beam in gases, J. Phys. D Appl. Phys., Vol. 46, 2013, p.185502.

DOI: 10.1088/0022-3727/46/18/185502

Google Scholar

[15] A. Karma and W.J. Rappel, Quantitative phase-field modeling of dendritic growth in two and three dimensions, Phys. Rev. E, Vol. 57, 1998, pp.4323-4349.

DOI: 10.1103/physreve.57.4323

Google Scholar

[16] D. Kim and W. Lu, Three-dimensional model of electrostatically induced pattern formation in thin polymer films, Phys. Rev. B, Vol. 73, 2006, p.035206.

DOI: 10.1103/physrevb.73.035206

Google Scholar

[17] J. Song and D. Kim, Three-dimensional chemotaxis model for a crawling neutrophil, Phys. Rev. E, Vol. 82, 2010, p.051902.

Google Scholar

[18] L. Zhang, S. Kim and D. Kim, Multiphysics and Multiscale Analysis for Chemotherapeutic Drug, Biomed Res. Int., Vol. 2015, 2015, p.493985.

Google Scholar

[19] J.Z. Zhu, L.Q. Chen, J. Shen and V. Tikare, Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: Application of a semi-implicit Fourier spectral method, Phys. Rev. E, Vol. 60, 1999, pp.3564-3572.

DOI: 10.1103/physreve.60.3564

Google Scholar

[20] W. Lu and D.C. Kim, Patterning nanoscale structures by surface chemistry, Nano. Lett., Vol. 4, 2004, pp.313-316.

Google Scholar

[21] U.M. Ascher, S.J. Ruuth and B.T.R. Wetton, Implicit Explicit Methods for Time-Dependent Partial-Differential Equations, Siam. J. Numer. Anal., Vol. 32, 1995, pp.797-823.

DOI: 10.1137/0732037

Google Scholar

[22] H.R. Shanks, P.D. Maycock, P.H. Sidles and G.C. Danielson, Thermal Conductivity of Silicon from 300 to 1400°K, Phys. Rev. , Vol. 130, 1963, p.1743.

DOI: 10.1103/physrev.130.1743

Google Scholar