The g-C3N4 Nanosheets Separated by PS for Photocatalytic Degradation of Dye

Article Preview

Abstract:

Polymerization of styrene (St) stabilized by graphitic carbon nitride (g-C3N4) nanosheets, containing hydrophobic conjugated structure and hydrophilic oxygen-containing functional groups, is conducted at varying styrene concentration. It is found that the morphology of polystyrene (PS)/g-C3N4 nanocomposites tends to transform from g-C3N4 nanosheets coated PS nanospheres to g-C3N4 nanosheets separated by PS with irregular morphology by further increasing the concentration of St. The strong interaction between PS and g-C3N4 nanosheets, suggesting by FT-IR, XRD patterns and UV–vis spectra results, and the amount of St are responsible for the structure and morphology of the final product. The g-C3N4 nanosheets separated by PS exhibit the highest photocatalytic efficiencies towards degradation of methylene blue (MB), due to the specific structure and morphology. The PS separates g-C3N4 nanosheets, obstructs the aggregates of g-C3N4 nanosheets. On the other hand, the PS as a collector gathers the MB, which is benefit for the close contact between g-C3N4 nanosheets and MB, achieving the collective effect to greatly increase the photocatalytic efficiency.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

215-224

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Singh, P.K. Singh, H. Mahalingam, Novel Floating Ag+‑Doped TiO2/Polystyrene Photocatalysts for the Treatment of Dye Wastewater, Ind. Eng. Chem. Res. 53 (2014) 16332-16340.

DOI: 10.1021/ie502911a

Google Scholar

[2] B. Li, X. Shao, T. Liu, L. Shao, B. Zhang, Construction of metal/WO2. 72/rGO ternary nanocomposites withoptimized adsorption, photocatalytic and photoelectrochemicalproperties, Appl. Catal B-Environ. 198 (2016) 325-333.

DOI: 10.1016/j.apcatb.2016.06.001

Google Scholar

[3] Q. Yu, X. Li, M. Zhang, One-step fabrication and high photocatalytic activity of porous graphitic carbon nitride synthesised via direct polymerisation of dicyandiamide without templates, Micro Nano Lett. 9 (2014) 1-5.

DOI: 10.1049/mnl.2013.0651

Google Scholar

[4] Y.J. Zhang, T. Mori, L. Niu, J.H. Ye, Non-covalent doping of graphitic carbon nitride polymer with graphene: controlled electronic structure and enhanced optoelectronic conversion, Energ. Environ. Sci. 4 (2011) 4517-4521.

DOI: 10.1039/c1ee01400e

Google Scholar

[5] I. Papailias, N. Todorova, T. Giannakopoulou, J. Yu, D. Dimotikali, C. Trapalis, Photocatalytic activity of modified g-C3N4/TiO2 nanocomposites for NOx removal, Cataly. Today, 280 (2017) 37-44.

DOI: 10.1016/j.cattod.2016.06.032

Google Scholar

[6] L. Wang, C. Ma, Z. Guo, Y. Lv, W. Chen, Z. Chang, Q. Yuan, H. Ming and J. Wang, In-situ growth of g-C3N4 layer on ZnO nanoparticles with enhanced Photocatalytic performances under visible light irradiation, Mater. Lett. 188 (2017) 347-350.

DOI: 10.1016/j.matlet.2016.11.113

Google Scholar

[7] L. Zhang, X. He, X. Xu, C. Liu, Y. Duan, L. Hou, Q. Zhou, C. Ma, X. Yang, R. Liu, F. Yang, L. Cui, C. Xu, Y. Li, Highly active TiO2/g-C3N4/G photocatalyst with extended spectralresponse towards selective reduction of nitrobenzene, Appl. Catal. B: Environ., 203 (2017).

DOI: 10.1016/j.apcatb.2016.10.003

Google Scholar

[8] H.J. Li, B. Sun, L. Sui, D. Qian, M. Chen, Preparation of water-dispersible porous g-C3N4 with improved photocatalytic activity by chemical oxidation, Phys. Chem. Chem. Physthis. 17 (2015) 3309-3315.

DOI: 10.1039/c4cp05020g

Google Scholar

[9] J. Tian, R. Ning, Q. Liu, M.A. Abdmllah, O.A. Abdulrahman, X. Sun, Three-Dimensional Porous Supramolecular Architecture from Ultrathin g-C3N4 Nanosheets and Reduced Graphene Oxide: Solution Self-Assembly Construction and Application as a Highly Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction, ACS Appl. Mater. Interfaces. 6 (2014).

DOI: 10.1021/am404536w

Google Scholar

[10] V. Vaiano, O. Sacco, D. Sannino, P. Ciambelli, S. Longo, V. Venditto, G. Guerra, N-doped TiO2/s-PS aerogels for photocatalytic degradation of organic dyes in wastewater under visible light irradiation, J. Chem. Techno. l Biotechnol. 89 (2014).

DOI: 10.1002/jctb.4372

Google Scholar

[11] A. Schmid, J. Tonnar, S.P. Armes, A new highly efficient route to polymer-silica colloidal nanocomposite particles, Adv. Mater. 20 (2008) 3331-3336.

DOI: 10.1002/adma.200800506

Google Scholar

[12] Z. Cao, A. Schrade, K. Landfester, U. Ziener, Synthesis of Raspberry-Like Organic–Inorganic Hybrid Nanocapsules via Pickering Miniemulsion Polymerization: Colloidal Stability and Morphology, J. Polym. Sci. Pol. Chem. 49 (2011) 2382-2394.

DOI: 10.1002/pola.24668

Google Scholar

[13] M.M. Gudarzi, F. Sharif, Self assembly of grapheme oxide at the liquid-liquid interface: A new route to the fabrication of grapheme based composites, Soft Matter. 7 (2011) 3432-3440.

DOI: 10.1039/c0sm01311k

Google Scholar

[14] X. Song, Y. Yang, J. Liu, H. Zhao, PS Colloidal Particles Stabilized by Graphene Oxide, Langmuir. 27 (2011) 1186-1191.

DOI: 10.1021/la103856h

Google Scholar

[15] H. Gao, Y. Peng, J. Pan, J. Zeng, C. Song, Y. Zhang, Y. Yan, W. Shi, Synthesis and evaluation of macroporous polymerized solid acid derived from Pickering HIPEs for catalyzing cellulose into 5-hydroxymethylfurfural in an ionic liquid, RSC Adv. 4 (2014).

DOI: 10.1039/c4ra06870j

Google Scholar

[16] Z. Fang, D. Yang, Y. Gao, H. Li, Massage ball-like, hollow porous Au/SiO2 microspheres templated by a Pickering emulsion derived from polymer–metal hybrid emulsifier micelles, RSC Adv. 4 (2014) 49866-49872.

DOI: 10.1039/c4ra09545f

Google Scholar

[17] T. Chen, P.J. Colver, S.A.F. Bon, Organic-inorganic hybrid hollow spberes prepared from TiO2-stabilized pickering emulsion polymerization, Adv. Mater. 19 (2007) 2286-2289.

DOI: 10.1002/adma.200602447

Google Scholar

[18] W. Chen, X. Liu, Y. Liu, H.I. Kim, Synthesis of microcapsules with polystyrene/ZnO hybrid shell by Pickering emulsion polymerization, Colloid Polym. Sci. 288 (2010) 1393-1399.

DOI: 10.1007/s00396-010-2277-8

Google Scholar

[19] G. Yin, Z. Zheng, H. Wang, Q. Du, H. Zhang, Preparation of graphene oxide coated polystyrene microspheres by Pickering emulsion polymerization, J. Colloid. Interf. Sci. 394 (2013) 192-98.

DOI: 10.1016/j.jcis.2012.11.024

Google Scholar

[20] Z.L. Liu, X.H. Lin, J.Y. Lee, W. Zhang, M. Han, L.M. Gan, Preparation and Characterization of Platinum-Based Electrocatalysts on Multiwalled Carbon Nanotubes for Proton Exchange Membrane Fuel Cells, Langmuir. 18 (2002) 4054-060.

DOI: 10.1021/la0116903

Google Scholar

[21] D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D.P. S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice Jr., R.S. Ruoff, Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy, Carbon, 7 (2009).

DOI: 10.1016/j.carbon.2008.09.045

Google Scholar

[22] J. Li, B. Shen, Z. Hong, B. Lin, B. Gao, Y. Chen, A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity, Chem. Commun. 48 (2012) 12017-12019.

DOI: 10.1039/c2cc35862j

Google Scholar

[23] X. Song, Y. Zhao, H. Wang, Q. Du, Fabrication of Polymer Microspheres Using Titania as a Photocatalyst and Pickering Stabilizer, Langmuir. 25(2009) 4443-4449.

DOI: 10.1021/la8039237

Google Scholar

[24] J. Kim, L.J. Cote, F. Kim, W. Yuan, K.R. Shull, J.X. Huang, Graphene Oxide Sheets at Interfaces, J. Am. Chem. Soc. 132 (2010) 8180-8186.

DOI: 10.1021/ja102777p

Google Scholar

[25] G.K. Agarwal, J.J. Titman, M.J. Percy, S.P. Armes, Characterization of Vinyl Polymer/Silica Colloidal Nanocomposites Using Solid State NMR Spectroscopy: Probing the Interaction between the Inorganic and Organic Phases on the Molecular Level, J. Phys. Chem. B. 107 (2003).

DOI: 10.1021/jp036065g

Google Scholar

[26] Q. Yu, X. Li, L. Zhang, X. Wang, Y. Tao, M. Zhang, Significantly improving the performance and dispersion morphology of porous g-C3N4/PANI composites by an interfacial polymerization method, e-Polymers. 15 (2015) 95-101.

DOI: 10.1515/epoly-2014-0218

Google Scholar

[27] Q. Yu, X. Li, L. Zhang, X. Wang, Y. Tao, X. Wang, Synthesize of PANI/g-C3N4 Composites by Interfacial Polymerization Method and Study of the Visible-light Driven Photocatalytic Performance of the Composites, J. Polym. Mater. 32 (2015) 417-428.

Google Scholar