Obtaining Ultra-High Surface Area TiO2 Nanorods via Hydrothermally Transformation of Elongated Titanate Nanotubes

Article Preview

Abstract:

In this paper, a tunable TiO2 nanorod cross-link structure with ultra-high surface area (up to 109.81 m2/g) has been successfully prepared via hydrothermally treating elongated sodium titanate nanotubes. XRD, SEM, HRTEM and BET analysis were employed to characterize the morphology and inner structure of the samples. The preparation conditions (the hydrothermal temperatures and the pH values of the solutions) of the obtained TiO2 products were systematically studied. The maximum length of nanorod reaches to 1 μm while the lateral size could be limited less than 10 nm. The surface area can be easily tuned by modifying the stirring rate during the hydrothermal process. In addition, the photocatalytic performance of synthesized TiO2 nanorods were also measured, and the nanorod structure with ultra-high surface area showed much better photocatalytic activity than the sample produced without stirring process, which can be attributed to the influence of the large difference in specific surface area of the obtained TiO2 products.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-23

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Shieh, S. Huang, Y. Lin, Y. Lin, J. Lin, T. Yeh, Microporous and Mesoporous Materials TiO2 derived from TiC reaction in HNO3 : Investigating the origin of textural change and enhanced visible-light absorption and applications in catalysis, Microporous. Mesoporous. Mater. 167 (2013).

DOI: 10.1016/j.micromeso.2012.08.032

Google Scholar

[2] M.N. Uddin, S.U.A. Shibly, R. Ovali, Saiful Islam, M.M.R. Mazumder, M.S. Islam, An experimental and first-principles study of the effect of B/N doping in TiO2 thin films for visible light photo-catalysis, J. Photochem. Photobiol. A Chem. 254 (2013).

DOI: 10.1016/j.jphotochem.2012.12.024

Google Scholar

[3] Q. Zhang, W. Li, S. Liu, Controlled fabrication of nanosized TiO2 hollow sphere particles via acid catalytic hydrolysis/hydrothermal treatment, Powder. Technol. 212 (2011) 145–150.

DOI: 10.1016/j.powtec.2011.05.004

Google Scholar

[4] Y. Gan, L. Zhu, H. Qin, Y. Xia, H. Xiao, L. Xu, Hybrid nanoarchitecture of rutile TiO2 nanoneedle/graphene for advanced lithium-ion batteries, Solid. State. Ionics. 269 (2015) 44–50.

DOI: 10.1016/j.ssi.2014.11.017

Google Scholar

[5] Y. Li, J.D. Luo, X.Y. Hu, X.F. Wang, J.C. Liang, K.F. Yu, Fabrication of TiO2 hollow nanostructures and their application in Lithium ion batteries, J. Alloys. Compd. 651 (2015) 685–689.

DOI: 10.1016/j.jallcom.2015.08.168

Google Scholar

[6] M. Iraj, F.D. Nayeri, E. Asl-Soleimani, K. Narimani, Controlled growth of vertically aligned TiO2 nanorod arrays using the improved hydrothermal method and their application to dye-sensitized solar cells, J. Alloys. Compd. 659 (2016) 44–50.

DOI: 10.1016/j.jallcom.2015.11.004

Google Scholar

[7] Y. Tang, C. Wang, Y. Hu, L. Huang, J. Fu, W. Yang, Preparation of anatase TiO2 nanorods with high aspect ratio for high-performance dye-sensitized solar cells, Superlattices. Microstruct. 89 (2016) 1–6.

DOI: 10.1016/j.spmi.2015.11.003

Google Scholar

[8] X. Xiao, W. Wenjun, L. Shuhong, Z. Wanquan, Z. Dong, D. Qianqian, Investigation of defect modes with Al2O3 and TiO2 in one-dimensional photonic crystals, Light. Electron. Opt. 127 (2016) 135–138.

DOI: 10.1016/j.ijleo.2015.10.005

Google Scholar

[9] J. Fan, Z. Li, W. Zhou, Y. Miao, Y. Zhang, J. Hu, Dye-sensitized solar cells based on TiO2 nanoparticles/nanobelts double-layered film with improved photovoltaic performance, Appl. Surf. Sci. 319 (2014) 75–82.

DOI: 10.1016/j.apsusc.2014.07.054

Google Scholar

[10] B. Soediono, Hydrothermal Splitting of Titanate Fibers to Single-Crystalline TiO2 Nanostructures with Controllable Crystalline Phase, Morphology, Microstructure, and Photocatalytic Activity, J. Phys. Chem. C. 112 (2008) 8809–8818.

DOI: 10.1021/jp711369e

Google Scholar

[11] Y. Yu, D. Xu, Single-crystalline TiO2 nanorods: Highly active and easily recycled photocatalysts, Appl. Catal. B. Environ. 73 (2007) 166–171.

DOI: 10.1016/j.apcatb.2006.07.017

Google Scholar

[12] Z.H. Fan, F.M. Meng, J.F. Gong, H.J. Li, Z.L. Dong, One-step hydrothermal synthesis of mesoporous Ce-doped anatase TiO2 nanoparticles with enhanced photocatalytic activity, J. Mater. Sci: Mater. Electron. 27 (2016) 11866–11872.

DOI: 10.1007/s10854-016-5329-0

Google Scholar

[13] Z.H. Fan, F.M. Meng, A.X. Li, J.F. Gong, H.J. Li, Facile synthesis and enhanced photocatalytic performance of dahlia-like TiO2 structures via an EDA-assisted hydrothermal method, J. Mater. Sci: Mater. Electron. 27 (2016) 10454–10459.

DOI: 10.1007/s10854-016-5134-9

Google Scholar

[14] F.M. Meng, Z.Q. Sun, Enhanced photocatalytic activity of silver nanoparticles modified TiO2 thin films prepared by RF magnetron sputtering, Mater. Chem. Phys. 118 (2009) 349–353.

DOI: 10.1016/j.matchemphys.2009.07.068

Google Scholar

[15] Z.H. Fan, F.M. Meng, J.F. Gong, H.J. Li, A.X. Li, Growth mechanism and photocatalytic activity of chrysanthemum-like anatase TiO2 nanostructures, Ceram. Int. 42 (2016) 6282–6287.

DOI: 10.1016/j.ceramint.2016.01.011

Google Scholar

[16] Z.H. Fan, F.M. Meng, J.F. Gong, H.J. Li, Y.D. Hu, Enhanced photocatalytic activity of hierarchical flower-like CeO2/TiO2 heterostructures, Mater. Lett. 175 (2016) 36–39.

DOI: 10.1016/j.matlet.2016.03.136

Google Scholar

[17] Z. Hua, Z. Dai, X. Bai, Z. Ye, P. Wang, H. Gu, Copper nanoparticles sensitized TiO2 nanotube arrays electrode with enhanced photoelectrocatalytic activity for diclofenac degradation, Chem. Eng. J. 283 (2015) 514–523.

DOI: 10.1016/j.cej.2015.07.072

Google Scholar

[18] Q. Wang, X. Wang, M. Zhang, G. Li, S. Gao, M. Li, Influence of Ag–Au microstructure on the photoelectrocatalytic performance of TiO2 nanotube array photocatalysts, J. Colloid Interface Sci. 463 (2016) 308–316.

DOI: 10.1016/j.jcis.2015.10.063

Google Scholar

[19] H. Li, Y. Sheng, H. Zhang, J. Xue, K. Zheng, Q. Huo, Synthesis and luminescent properties of TiO2:Eu3+ nanotubes, Powder Technol. 212 (2011) 372–377.

DOI: 10.1016/j.powtec.2011.06.019

Google Scholar

[20] K. Fischer, R. Gläser, A. Schulze, Nanoneedle and nanotubular titanium dioxide – PES mixed matrix membrane for photocatalysis, Appl. Catal. B Environ. 160-161 (2014) 456–464.

DOI: 10.1016/j.apcatb.2014.05.054

Google Scholar

[21] Y. Tang, Y. Zhang, J. Deng, J. Wei, H. Le Tam, B.K. Chandran, Mechanical Force-Driven Growth of Elongated Bending TiO2 -based Nanotubular Materials for Ultrafast Rechargeable Lithium Ion Batteries, Adv. Mater. 26 (2014) 6111–6118.

DOI: 10.1002/adma.201402000

Google Scholar

[22] Y. Tang, Y. Zhang, J. Deng, D. Qi, W.R. Leow, J. Wei, Unravelling the Correlation between the Aspect Ratio of Nanotubular Structures and Their Electrochemical Performance To Achieve High-Rate and Long-Life Lithium-Ion Batteries., Angew. Chem. Int. Ed. Engl. 53 (2014).

DOI: 10.1002/anie.201406719

Google Scholar

[23] A.A. Garay, S.M. Hwang, C.W. Chung, Inductive couple plasma reactive ion etching characteristics of TiO2 thin films, Thin Solid Films. 587 (2014) 20–27.

DOI: 10.1016/j.tsf.2014.11.055

Google Scholar

[24] S.H. Kazemi, M.G. Maghami, M. a Kiani, Electrodeposited manganese dioxide nanostructures on electro-etched carbon fibers: High performance materials for supercapacitor applications, Mater. Res. Bull. 60 (2014) 137–142.

DOI: 10.1016/j.materresbull.2014.08.032

Google Scholar

[25] L. Li, S. Bai, W. Yin, S. Li, Y. Zhang, Z. Li, A novel etching and reconstruction route to ultrathin porous TiO2 hollow spheres for enhanced photocatalytic hydrogen evolution, Int. J. Hydrogen Energy. (2015) 1–8.

DOI: 10.1016/j.ijhydene.2015.10.110

Google Scholar

[26] D.-Y. Kim, J.-J. Park, J.-G. Lee, M.F. a. M. van Hest, S.S. Yoon, Wettability and photocatalysis of CF4 plasma etched titania films of honeycomb structure, Ceram. Int. 39 (2013) 9737–9742.

DOI: 10.1016/j.ceramint.2013.04.094

Google Scholar

[27] B.-X. Lei, X.-F. Zheng, H. Qiao, Y. Li, S.-N. Wang, G.-L. Huang, A novel hierarchical homogeneous nanoarchitecture of TiO2 nanosheets branched TiO2 nanosheet arrays for high efficiency dye-sensitized solar cells, Electrochim. Acta. 149 (2014).

DOI: 10.1016/j.electacta.2014.10.115

Google Scholar

[28] L. Tang, Y. Deng, G. Zeng, W. Hu, J. Wang, Y. Zhou, CdS/Cu2S co-sensitized TiO2 branched nanorod arrays of enhanced photoelectrochemical properties by forming nanoscale heterostructure, J. Alloys Compd. 662 (2016) 516–527.

DOI: 10.1016/j.jallcom.2015.11.206

Google Scholar

[29] J. Liu, X. Yu, Q. Liu, R. Liu, X. Shang, S. Zhang, Surface-phase junctions of branched TiO2 nanorod arrays for efficient photoelectrochemical water splitting, Appl. Catal. B Environ. 158-159 (2014) 296–300.

DOI: 10.1016/j.apcatb.2014.04.032

Google Scholar

[30] S.Y. Noh, K. Sun, C. Choi, M. Niu, M. Yang, K. Xu, Branched TiO2/Si nanostructures for enhanced photoelectrochemical water splitting, Nano Energy. 2 (2013) 351–360.

DOI: 10.1016/j.nanoen.2012.10.010

Google Scholar

[31] J. Niu, P. Lu, M. Kang, K. Deng, B. Yao, X. Yu, P-doped TiO2 with superior visible-light activity prepared by rapid microwave hydrothermal method, Appl. Surf. Sci. 319 (2014) 99–106.

DOI: 10.1016/j.apsusc.2014.07.048

Google Scholar

[32] Y. Xu, X. Fang, J. Xiong, Z. Zhang, Hydrothermal transformation of titanate nanotubes into single-crystalline TiO2 nanomaterials with controlled phase composition and morphology, Mater. Res. Bull. 45 (2010) 799–804.

DOI: 10.1016/j.materresbull.2010.03.016

Google Scholar

[33] J.N. Nian, H. Teng, Hydrothermal synthesis of single-crystalline anatase TiO2 nanorods with nanotubes as the precursor, J. Phys. Chem. B. 110 (2006) 4193–4198.

DOI: 10.1021/jp0567321

Google Scholar

[34] N. Wang, H. Lin, J. Li, L. Zhang, C. Lin, X. Li, Crystalline transition from H2Ti3O7 nanotubes to anatase nanocrystallites under low-temperature hydrothermal conditions, J. Am. Ceram. Soc. 89 (2006) 3564–3566.

DOI: 10.1111/j.1551-2916.2006.01257.x

Google Scholar

[35] Z.H. Fan, F.M. Meng, M. Zhang, Z.Y. Wu, Z.Q. Sun, A.X. Li, Solvothermal systhesis of hierarchical TiO2 nanostructures with tunable morphology and enhanced photocatalytic activity, Appl. Surf. Sci. 360 (2016) 298–305.

DOI: 10.1016/j.apsusc.2015.11.021

Google Scholar