[1]
D. Shieh, S. Huang, Y. Lin, Y. Lin, J. Lin, T. Yeh, Microporous and Mesoporous Materials TiO2 derived from TiC reaction in HNO3 : Investigating the origin of textural change and enhanced visible-light absorption and applications in catalysis, Microporous. Mesoporous. Mater. 167 (2013).
DOI: 10.1016/j.micromeso.2012.08.032
Google Scholar
[2]
M.N. Uddin, S.U.A. Shibly, R. Ovali, Saiful Islam, M.M.R. Mazumder, M.S. Islam, An experimental and first-principles study of the effect of B/N doping in TiO2 thin films for visible light photo-catalysis, J. Photochem. Photobiol. A Chem. 254 (2013).
DOI: 10.1016/j.jphotochem.2012.12.024
Google Scholar
[3]
Q. Zhang, W. Li, S. Liu, Controlled fabrication of nanosized TiO2 hollow sphere particles via acid catalytic hydrolysis/hydrothermal treatment, Powder. Technol. 212 (2011) 145–150.
DOI: 10.1016/j.powtec.2011.05.004
Google Scholar
[4]
Y. Gan, L. Zhu, H. Qin, Y. Xia, H. Xiao, L. Xu, Hybrid nanoarchitecture of rutile TiO2 nanoneedle/graphene for advanced lithium-ion batteries, Solid. State. Ionics. 269 (2015) 44–50.
DOI: 10.1016/j.ssi.2014.11.017
Google Scholar
[5]
Y. Li, J.D. Luo, X.Y. Hu, X.F. Wang, J.C. Liang, K.F. Yu, Fabrication of TiO2 hollow nanostructures and their application in Lithium ion batteries, J. Alloys. Compd. 651 (2015) 685–689.
DOI: 10.1016/j.jallcom.2015.08.168
Google Scholar
[6]
M. Iraj, F.D. Nayeri, E. Asl-Soleimani, K. Narimani, Controlled growth of vertically aligned TiO2 nanorod arrays using the improved hydrothermal method and their application to dye-sensitized solar cells, J. Alloys. Compd. 659 (2016) 44–50.
DOI: 10.1016/j.jallcom.2015.11.004
Google Scholar
[7]
Y. Tang, C. Wang, Y. Hu, L. Huang, J. Fu, W. Yang, Preparation of anatase TiO2 nanorods with high aspect ratio for high-performance dye-sensitized solar cells, Superlattices. Microstruct. 89 (2016) 1–6.
DOI: 10.1016/j.spmi.2015.11.003
Google Scholar
[8]
X. Xiao, W. Wenjun, L. Shuhong, Z. Wanquan, Z. Dong, D. Qianqian, Investigation of defect modes with Al2O3 and TiO2 in one-dimensional photonic crystals, Light. Electron. Opt. 127 (2016) 135–138.
DOI: 10.1016/j.ijleo.2015.10.005
Google Scholar
[9]
J. Fan, Z. Li, W. Zhou, Y. Miao, Y. Zhang, J. Hu, Dye-sensitized solar cells based on TiO2 nanoparticles/nanobelts double-layered film with improved photovoltaic performance, Appl. Surf. Sci. 319 (2014) 75–82.
DOI: 10.1016/j.apsusc.2014.07.054
Google Scholar
[10]
B. Soediono, Hydrothermal Splitting of Titanate Fibers to Single-Crystalline TiO2 Nanostructures with Controllable Crystalline Phase, Morphology, Microstructure, and Photocatalytic Activity, J. Phys. Chem. C. 112 (2008) 8809–8818.
DOI: 10.1021/jp711369e
Google Scholar
[11]
Y. Yu, D. Xu, Single-crystalline TiO2 nanorods: Highly active and easily recycled photocatalysts, Appl. Catal. B. Environ. 73 (2007) 166–171.
DOI: 10.1016/j.apcatb.2006.07.017
Google Scholar
[12]
Z.H. Fan, F.M. Meng, J.F. Gong, H.J. Li, Z.L. Dong, One-step hydrothermal synthesis of mesoporous Ce-doped anatase TiO2 nanoparticles with enhanced photocatalytic activity, J. Mater. Sci: Mater. Electron. 27 (2016) 11866–11872.
DOI: 10.1007/s10854-016-5329-0
Google Scholar
[13]
Z.H. Fan, F.M. Meng, A.X. Li, J.F. Gong, H.J. Li, Facile synthesis and enhanced photocatalytic performance of dahlia-like TiO2 structures via an EDA-assisted hydrothermal method, J. Mater. Sci: Mater. Electron. 27 (2016) 10454–10459.
DOI: 10.1007/s10854-016-5134-9
Google Scholar
[14]
F.M. Meng, Z.Q. Sun, Enhanced photocatalytic activity of silver nanoparticles modified TiO2 thin films prepared by RF magnetron sputtering, Mater. Chem. Phys. 118 (2009) 349–353.
DOI: 10.1016/j.matchemphys.2009.07.068
Google Scholar
[15]
Z.H. Fan, F.M. Meng, J.F. Gong, H.J. Li, A.X. Li, Growth mechanism and photocatalytic activity of chrysanthemum-like anatase TiO2 nanostructures, Ceram. Int. 42 (2016) 6282–6287.
DOI: 10.1016/j.ceramint.2016.01.011
Google Scholar
[16]
Z.H. Fan, F.M. Meng, J.F. Gong, H.J. Li, Y.D. Hu, Enhanced photocatalytic activity of hierarchical flower-like CeO2/TiO2 heterostructures, Mater. Lett. 175 (2016) 36–39.
DOI: 10.1016/j.matlet.2016.03.136
Google Scholar
[17]
Z. Hua, Z. Dai, X. Bai, Z. Ye, P. Wang, H. Gu, Copper nanoparticles sensitized TiO2 nanotube arrays electrode with enhanced photoelectrocatalytic activity for diclofenac degradation, Chem. Eng. J. 283 (2015) 514–523.
DOI: 10.1016/j.cej.2015.07.072
Google Scholar
[18]
Q. Wang, X. Wang, M. Zhang, G. Li, S. Gao, M. Li, Influence of Ag–Au microstructure on the photoelectrocatalytic performance of TiO2 nanotube array photocatalysts, J. Colloid Interface Sci. 463 (2016) 308–316.
DOI: 10.1016/j.jcis.2015.10.063
Google Scholar
[19]
H. Li, Y. Sheng, H. Zhang, J. Xue, K. Zheng, Q. Huo, Synthesis and luminescent properties of TiO2:Eu3+ nanotubes, Powder Technol. 212 (2011) 372–377.
DOI: 10.1016/j.powtec.2011.06.019
Google Scholar
[20]
K. Fischer, R. Gläser, A. Schulze, Nanoneedle and nanotubular titanium dioxide – PES mixed matrix membrane for photocatalysis, Appl. Catal. B Environ. 160-161 (2014) 456–464.
DOI: 10.1016/j.apcatb.2014.05.054
Google Scholar
[21]
Y. Tang, Y. Zhang, J. Deng, J. Wei, H. Le Tam, B.K. Chandran, Mechanical Force-Driven Growth of Elongated Bending TiO2 -based Nanotubular Materials for Ultrafast Rechargeable Lithium Ion Batteries, Adv. Mater. 26 (2014) 6111–6118.
DOI: 10.1002/adma.201402000
Google Scholar
[22]
Y. Tang, Y. Zhang, J. Deng, D. Qi, W.R. Leow, J. Wei, Unravelling the Correlation between the Aspect Ratio of Nanotubular Structures and Their Electrochemical Performance To Achieve High-Rate and Long-Life Lithium-Ion Batteries., Angew. Chem. Int. Ed. Engl. 53 (2014).
DOI: 10.1002/anie.201406719
Google Scholar
[23]
A.A. Garay, S.M. Hwang, C.W. Chung, Inductive couple plasma reactive ion etching characteristics of TiO2 thin films, Thin Solid Films. 587 (2014) 20–27.
DOI: 10.1016/j.tsf.2014.11.055
Google Scholar
[24]
S.H. Kazemi, M.G. Maghami, M. a Kiani, Electrodeposited manganese dioxide nanostructures on electro-etched carbon fibers: High performance materials for supercapacitor applications, Mater. Res. Bull. 60 (2014) 137–142.
DOI: 10.1016/j.materresbull.2014.08.032
Google Scholar
[25]
L. Li, S. Bai, W. Yin, S. Li, Y. Zhang, Z. Li, A novel etching and reconstruction route to ultrathin porous TiO2 hollow spheres for enhanced photocatalytic hydrogen evolution, Int. J. Hydrogen Energy. (2015) 1–8.
DOI: 10.1016/j.ijhydene.2015.10.110
Google Scholar
[26]
D.-Y. Kim, J.-J. Park, J.-G. Lee, M.F. a. M. van Hest, S.S. Yoon, Wettability and photocatalysis of CF4 plasma etched titania films of honeycomb structure, Ceram. Int. 39 (2013) 9737–9742.
DOI: 10.1016/j.ceramint.2013.04.094
Google Scholar
[27]
B.-X. Lei, X.-F. Zheng, H. Qiao, Y. Li, S.-N. Wang, G.-L. Huang, A novel hierarchical homogeneous nanoarchitecture of TiO2 nanosheets branched TiO2 nanosheet arrays for high efficiency dye-sensitized solar cells, Electrochim. Acta. 149 (2014).
DOI: 10.1016/j.electacta.2014.10.115
Google Scholar
[28]
L. Tang, Y. Deng, G. Zeng, W. Hu, J. Wang, Y. Zhou, CdS/Cu2S co-sensitized TiO2 branched nanorod arrays of enhanced photoelectrochemical properties by forming nanoscale heterostructure, J. Alloys Compd. 662 (2016) 516–527.
DOI: 10.1016/j.jallcom.2015.11.206
Google Scholar
[29]
J. Liu, X. Yu, Q. Liu, R. Liu, X. Shang, S. Zhang, Surface-phase junctions of branched TiO2 nanorod arrays for efficient photoelectrochemical water splitting, Appl. Catal. B Environ. 158-159 (2014) 296–300.
DOI: 10.1016/j.apcatb.2014.04.032
Google Scholar
[30]
S.Y. Noh, K. Sun, C. Choi, M. Niu, M. Yang, K. Xu, Branched TiO2/Si nanostructures for enhanced photoelectrochemical water splitting, Nano Energy. 2 (2013) 351–360.
DOI: 10.1016/j.nanoen.2012.10.010
Google Scholar
[31]
J. Niu, P. Lu, M. Kang, K. Deng, B. Yao, X. Yu, P-doped TiO2 with superior visible-light activity prepared by rapid microwave hydrothermal method, Appl. Surf. Sci. 319 (2014) 99–106.
DOI: 10.1016/j.apsusc.2014.07.048
Google Scholar
[32]
Y. Xu, X. Fang, J. Xiong, Z. Zhang, Hydrothermal transformation of titanate nanotubes into single-crystalline TiO2 nanomaterials with controlled phase composition and morphology, Mater. Res. Bull. 45 (2010) 799–804.
DOI: 10.1016/j.materresbull.2010.03.016
Google Scholar
[33]
J.N. Nian, H. Teng, Hydrothermal synthesis of single-crystalline anatase TiO2 nanorods with nanotubes as the precursor, J. Phys. Chem. B. 110 (2006) 4193–4198.
DOI: 10.1021/jp0567321
Google Scholar
[34]
N. Wang, H. Lin, J. Li, L. Zhang, C. Lin, X. Li, Crystalline transition from H2Ti3O7 nanotubes to anatase nanocrystallites under low-temperature hydrothermal conditions, J. Am. Ceram. Soc. 89 (2006) 3564–3566.
DOI: 10.1111/j.1551-2916.2006.01257.x
Google Scholar
[35]
Z.H. Fan, F.M. Meng, M. Zhang, Z.Y. Wu, Z.Q. Sun, A.X. Li, Solvothermal systhesis of hierarchical TiO2 nanostructures with tunable morphology and enhanced photocatalytic activity, Appl. Surf. Sci. 360 (2016) 298–305.
DOI: 10.1016/j.apsusc.2015.11.021
Google Scholar