Controllable Growth of ZnO Microstructures via a Solution Route

Article Preview

Abstract:

A facile method has been developed to fabricate ZnO microstructures by a solution route at an 80°C. The microstructures with various morphologies were fabricated in water or anhydrous ethanol by using polyvinylpyrrolidone and cetyltrimethylammonium bromide as surfactants. ZnO rods with aspect ratios up to 30 have been created successfully in water through a hydrothermal process, while novel shuttle-like ZnO microstructures were fabricated in anhydrous ethanol using a similar procedure. ZnO rods revealed wurtzite-type crystal structure according to their X-ray diffraction (XRD) patterns. The morphologies of ZnO microstructures were adjusted conveniently by changing solvents and surfactants. In addition, the sizes of ZnO microstructures decreased under a long reaction time. This morphological evolution of ZnO microstructures indicated that the growth of ZnO is susceptive to reaction time due to the reaction between ZnO and aqueous ammonia. The facile strategy described here would be utilizable for the preparation of various metal oxide microstructures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-47

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] AHMAD M. and ZHU J., J. Mater. Chem., 21 (2011), 599.

Google Scholar

[2] PARK W. II., KIM J. S., YI G.C., BAE M. H. and LEE H. J., Appl. Phys. Lett., 85 (2004), 5052.

Google Scholar

[3] BAXTER J. B. and AYDIL E. S., Appl. Phys. Lett., 86 (2005), 053114.

Google Scholar

[4] FAN Z. Y. and LU J. G., Appl. Phys. Lett., 86 (2005), 123510.

Google Scholar

[5] YAO B. D., CHAN Y. F. and WANG N., Appl. Phys. Lett., 81 (2002), 757.

Google Scholar

[6] GAO P. X., DING Y., MAI W., HUGHES W. L., LAO C. and WANG Z. L., Science, 309 (2005), 1700.

Google Scholar

[7] PARK W. I., KIM D. H., JUNG S. W. and YI G. C., Appl. Phys. Lett., 80 (2002), 4232.

Google Scholar

[8] LIU F., CAO P. J., ZHANG H. R., SHEN C. M., WANG Z., LI J. Q. and GAO H. J., J. Cryst. Growth, 274 (2005), 126.

Google Scholar

[9] PARK J. Y., LEE D. J. and KIM S. S., Nanotechnology, 16 (2005), (2044).

Google Scholar

[10] VANHEUSDEN K., WARREN W. L., SEAGER C. H., TALLANT D. R., VOIGT J. A. and GNADE B. E., J. Appl. Phys., 79 (1996), 7983.

Google Scholar

[11] GUO L., JI Y. L., XU H., SIMON P. and WU Z., J. Am. Chem. Soc., 124 (2002), 14864.

Google Scholar

[12] WU G. S., XIE T., YUAN X. Y., LI Y., YANG L., XIAO Y. H. and ZHANG L. D., Solid State Commun., 134 (2005), 485.

Google Scholar

[13] VAYSSIERES L., KEIS K., LINDQUIST S. and HAGFELDT A., J. Phys. Chem. B, 105 (2001), 3350.

Google Scholar

[14] VAYSSIERES L., KEIS K., HAGFELDT A. and LINDQUIST S. E., Chem. Mater., 13 (2001), 4395.

Google Scholar

[15] CHENG J., GUO R. and WANG Q., Appl. Phys. Lett., 85 (2004), 5140.

Google Scholar

[16] DAI Y., ZHANG Y., LI Q. K. and NAN C. W., Chem. Phys. Lett., 358 (2002), 83.

Google Scholar

[17] ZHANG H., YANG D., JI Y., MA X., XU J. and QUE D., J. Phys. Chem. B, 108 (2004), 3955.

Google Scholar

[18] GUI Z., LIU J., WANG Z., SONG L., HU Y., FAN W. and Chen D., J. Phys. Chem. B, 109 (2005), 1113.

Google Scholar

[19] TANG Q., ZHOU W. J., SHEN J. M., ZHANG W., KONG L. F. and QIAN Y. T., Chem. Commun.,712 (2004).

Google Scholar

[20] HOU H., XIONG Y., XIE Y., LI Q., ZHANG J. and TIAN X., J. Solid State Chem., 177 (2004), 176.

Google Scholar

[21] Shi R, Yang P, Wang J, et al. Growth of flower-like ZnO via surfactant-free hydrothermal synthesis on ITO substrate at low temperature, CrystEngComm, 2012, 14(18): 5996-6003.

DOI: 10.1039/c2ce25606a

Google Scholar

[22] SUN X. M., CHEN X., DENG Z. X. and LI Y. D., Mater. Chem. Phys., 78 (2002), 99.

Google Scholar

[23] Mo M. S., Yu J. C., Zhang L. Z. and Li S. A., Adv. Mater., 17 (2005), 756.

Google Scholar

[24] Cheng B, Samulski E T. Hydrothermal synthesis of one-dimensional ZnO nanostructures with different aspect ratios, Chem Commun, 2004, 8: 986-987.

DOI: 10.1039/b316435g

Google Scholar

[25] Wang Y L, Jiang X C, Xia Y N. A Solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions, J Am Chem Soc, 2003, 125(52): 16176-16177.

DOI: 10.1021/ja037743f

Google Scholar

[26] ZHANG H., YANG D. R., LI D. S., MA X. Y., LI S. Z. and QUE D. L., Cryst. Growth Des., 5 (2005), 547.

Google Scholar

[27] WEN B., HUANG Y. and BOLAND J. J., J. Phys. Chem. C, 112 (2008), 106.

Google Scholar

[28] WANG C., SHEN E., WANG E., GAO L., KANG Z., TIAN C., LAN Y. and ZHANG C., Mater. Lett., 59 (2005), 2867.

Google Scholar

[29] WEI S. F., LIAN J. S. and JIANG Q., Appl. Surf. Sci., 255 (2009), 6978.

Google Scholar