[1]
AHMAD M. and ZHU J., J. Mater. Chem., 21 (2011), 599.
Google Scholar
[2]
PARK W. II., KIM J. S., YI G.C., BAE M. H. and LEE H. J., Appl. Phys. Lett., 85 (2004), 5052.
Google Scholar
[3]
BAXTER J. B. and AYDIL E. S., Appl. Phys. Lett., 86 (2005), 053114.
Google Scholar
[4]
FAN Z. Y. and LU J. G., Appl. Phys. Lett., 86 (2005), 123510.
Google Scholar
[5]
YAO B. D., CHAN Y. F. and WANG N., Appl. Phys. Lett., 81 (2002), 757.
Google Scholar
[6]
GAO P. X., DING Y., MAI W., HUGHES W. L., LAO C. and WANG Z. L., Science, 309 (2005), 1700.
Google Scholar
[7]
PARK W. I., KIM D. H., JUNG S. W. and YI G. C., Appl. Phys. Lett., 80 (2002), 4232.
Google Scholar
[8]
LIU F., CAO P. J., ZHANG H. R., SHEN C. M., WANG Z., LI J. Q. and GAO H. J., J. Cryst. Growth, 274 (2005), 126.
Google Scholar
[9]
PARK J. Y., LEE D. J. and KIM S. S., Nanotechnology, 16 (2005), (2044).
Google Scholar
[10]
VANHEUSDEN K., WARREN W. L., SEAGER C. H., TALLANT D. R., VOIGT J. A. and GNADE B. E., J. Appl. Phys., 79 (1996), 7983.
Google Scholar
[11]
GUO L., JI Y. L., XU H., SIMON P. and WU Z., J. Am. Chem. Soc., 124 (2002), 14864.
Google Scholar
[12]
WU G. S., XIE T., YUAN X. Y., LI Y., YANG L., XIAO Y. H. and ZHANG L. D., Solid State Commun., 134 (2005), 485.
Google Scholar
[13]
VAYSSIERES L., KEIS K., LINDQUIST S. and HAGFELDT A., J. Phys. Chem. B, 105 (2001), 3350.
Google Scholar
[14]
VAYSSIERES L., KEIS K., HAGFELDT A. and LINDQUIST S. E., Chem. Mater., 13 (2001), 4395.
Google Scholar
[15]
CHENG J., GUO R. and WANG Q., Appl. Phys. Lett., 85 (2004), 5140.
Google Scholar
[16]
DAI Y., ZHANG Y., LI Q. K. and NAN C. W., Chem. Phys. Lett., 358 (2002), 83.
Google Scholar
[17]
ZHANG H., YANG D., JI Y., MA X., XU J. and QUE D., J. Phys. Chem. B, 108 (2004), 3955.
Google Scholar
[18]
GUI Z., LIU J., WANG Z., SONG L., HU Y., FAN W. and Chen D., J. Phys. Chem. B, 109 (2005), 1113.
Google Scholar
[19]
TANG Q., ZHOU W. J., SHEN J. M., ZHANG W., KONG L. F. and QIAN Y. T., Chem. Commun.,712 (2004).
Google Scholar
[20]
HOU H., XIONG Y., XIE Y., LI Q., ZHANG J. and TIAN X., J. Solid State Chem., 177 (2004), 176.
Google Scholar
[21]
Shi R, Yang P, Wang J, et al. Growth of flower-like ZnO via surfactant-free hydrothermal synthesis on ITO substrate at low temperature, CrystEngComm, 2012, 14(18): 5996-6003.
DOI: 10.1039/c2ce25606a
Google Scholar
[22]
SUN X. M., CHEN X., DENG Z. X. and LI Y. D., Mater. Chem. Phys., 78 (2002), 99.
Google Scholar
[23]
Mo M. S., Yu J. C., Zhang L. Z. and Li S. A., Adv. Mater., 17 (2005), 756.
Google Scholar
[24]
Cheng B, Samulski E T. Hydrothermal synthesis of one-dimensional ZnO nanostructures with different aspect ratios, Chem Commun, 2004, 8: 986-987.
DOI: 10.1039/b316435g
Google Scholar
[25]
Wang Y L, Jiang X C, Xia Y N. A Solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions, J Am Chem Soc, 2003, 125(52): 16176-16177.
DOI: 10.1021/ja037743f
Google Scholar
[26]
ZHANG H., YANG D. R., LI D. S., MA X. Y., LI S. Z. and QUE D. L., Cryst. Growth Des., 5 (2005), 547.
Google Scholar
[27]
WEN B., HUANG Y. and BOLAND J. J., J. Phys. Chem. C, 112 (2008), 106.
Google Scholar
[28]
WANG C., SHEN E., WANG E., GAO L., KANG Z., TIAN C., LAN Y. and ZHANG C., Mater. Lett., 59 (2005), 2867.
Google Scholar
[29]
WEI S. F., LIAN J. S. and JIANG Q., Appl. Surf. Sci., 255 (2009), 6978.
Google Scholar