Thermal and Small-Scale Effects on Vibration of Embedded Armchair Single-Walled Carbon Nanotubes

Article Preview

Abstract:

The non-local Timoshenko beam theory has been implemented to investigate the free vibration of armchair single-walled carbon nanotubes embedded in elastic medium including the thermal effects. The mechanical properties of nano-composite (carbon nanotubes and polymer matrix) are treated as functions of temperature change and the analytical solution is derived according to the governing equations of non-local Timoshenko beam models. The equivalent Young’s modulus and shear modulus for armchair single-walled carbon nanotubes are derived using an energy-equivalent model. Influence of small-scale coefficient, vibrational mode number, matrix of nano-composite and aspect ratio on the frequency ratio of the armchair single-walled carbon nanotubes including the thermal effect are studied and discussed. The research work reveals the significance of the small-scale coefficient, the vibrational mode number, the elastic medium and the aspect ratio on the frequency ratio. It is also demonstrated that some properties of free vibrations of single-walled carbon nanotubes are dependent on the change of temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

24-38

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Iijima, Helical microtubules of graphitic carbon, Nature. 354 (1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[2] S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1 nm diameter, Nature. 363 (1993) 603 - 605.

DOI: 10.1038/363603a0

Google Scholar

[3] M.S. Dresselhaus, P. Avouris, Carbon nanotubes: synthesis, structure, properties and application, in: Dresselhaus, Mildred S., Dresselhaus, Gene, Avouris, Phaedon (Eds.), Top Appl Phys, 2001, p.11.

DOI: 10.1007/3-540-39947-x

Google Scholar

[4] M. Zidour, L. Hadji, M. Bouazza, A. Tounsi, El A. A. Bedia, The mechanical properties of Zigzag carbon nanotube using the energy-equivalent model,, Journal of Chemistry and Materials Research, Vol. 3, p.9–14, (2015).

Google Scholar

[5] S. Tagrara et al., On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams,, Steel and Composite Structures, Vol. 19, No. 5, pp.1259-1277, (2015).

DOI: 10.12989/scs.2015.19.5.1259

Google Scholar

[6] M. Aydogdu, On the vibration of aligned carbon nanotube reinforced composite beams,, Advances in Nano Research, Vol. 2, No. 4, pp.199-210, (2014).

DOI: 10.12989/anr.2014.2.4.199

Google Scholar

[7] A. R. Ranjbartoreh, A. Ghorbanpour, B. Soltani, Double-walled carbon nanotube with surrounding elastic medium under axial pressure, Physica E, 39 (2007) 230-239.

DOI: 10.1016/j.physe.2007.04.010

Google Scholar

[8] Y. Jin, F. G. Yuan, Simulation of elastic properties of single-walled carbon nanotubes, Compos. Sci. Technol. 63 (2003) 1507-1515.

DOI: 10.1016/s0266-3538(03)00074-5

Google Scholar

[9] Y. Gafour, M. Zidour, A. Tounsi, H. Heireche, A. Semmah, Sound wave propagation in zigzag double-walled carbon nanotubes embedded in an elastic medium using nonlocal elasticity theory, Physica E. 48 (2013) 118-123.

DOI: 10.1016/j.physe.2012.11.006

Google Scholar

[10] S, Benguediab, A. Tounsi, M. Zidour, A. Semmah, Chirality and scale effects on mechanical buckling properties of zigzag double-walled carbon nanotubes, Composites Part B. 57 (2014) 21-24.

DOI: 10.1016/j.compositesb.2013.08.020

Google Scholar

[11] A. Zemri, M. S. A. Houari, A. A. Bousahla, A. Tounsi, A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory,, Struct. Eng. Mech., Int. J., 54(4) , 693-710, (2015).

DOI: 10.12989/sem.2015.54.4.693

Google Scholar

[12] 20. F. Bounouara, K. H. Benrahou, I. Belkorissat, A. Tounsi, A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation,, Steel and Composite Structures, 20(2), 227-249, (2016).

DOI: 10.12989/scs.2016.20.2.227

Google Scholar

[13] A, Tounsi, S. Benguediab, E. A. Bedia, A. Semmah, M. Zidour, Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes, Advances in Nano Research. 1(1) (2013) 1-11.

DOI: 10.12989/anr.2013.1.1.001

Google Scholar

[14] K. Amara, A. Tounsi, I. Mechab and E. A. A. Bedia, Nonlocal elasticity effect on column buckling of multiwalled carbon nanotubes under temperature field, Appl. Math. Model. 34 (2010) 3933-3942.

DOI: 10.1016/j.apm.2010.03.029

Google Scholar

[15] M. Zidour, K. H. Benrahou, A. Semmah, M. Naceri, H. A. Belhadj, K. Bakhti, A.Tounsi, The thermal effect on vibration of zigzag single walled carbon nanotubes using nonlocal Timoshenko beam theory, Computational Materials Science. 51 (2012).

DOI: 10.1016/j.commatsci.2011.07.021

Google Scholar

[16] H. Bellifa, K. H. Benrahou, L. Hadji, M. S. A. Houari, A. Tounsi, Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position,, J Braz. Soc. Mech. Sci. Eng., 38(1), 265-275, (2016).

DOI: 10.1007/s40430-015-0354-0

Google Scholar

[17] M. Naceri, M. Zidour, A. Semmah, S. A. Houari, A. Benzair, A. Tounsi, Sound wave propagation in armchair single walled carbon nanotubes under thermal environment, Journal of applied physics. 110 (2011) 124322.

DOI: 10.1063/1.3671636

Google Scholar

[18] M. Maachou, M. Zidour, H. Baghdadi, N. Ziane, A. Tounsi, A nonlocal Levinson beam model for free vibration analysis of zigzag single-walled carbon nanotubes including thermal effects, Solid State Communications. 151 (2011) 1467-1471.

DOI: 10.1016/j.ssc.2011.06.038

Google Scholar

[19] W. A. Bedia, A. Benzair, A. Semmah, A. Tounsi, S. R. Mahmoud, On the Thermal Buckling Characteristics of Armchair Single-Walled Carbon Nanotube Embedded in an Elastic Medium Based on Nonlocal Continuum Elasticity, Brazilian Journal of Physics. 45 (2015).

DOI: 10.1007/s13538-015-0306-2

Google Scholar

[20] T. Murmu, S. C. Pradhan, Thermal effects on the stability of embedded carbon nanotubes, Comput. Mater. Sci. 47 (2010) 721-726.

DOI: 10.1016/j.commatsci.2009.10.015

Google Scholar

[21] F. Larbi Chaht, A. Kaci, M. S. A. Houari, A. Tounsi, O. A. Bég, S. R. Mahmoud, Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect, Steel and Composite Structures, 18(2), 425-442, (2015).

DOI: 10.12989/scs.2015.18.2.425

Google Scholar

[22] K. S. Al-Basyouni, A. Tounsi, S. R. Mahmoud, Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position,, Compos. Struct., 125, 621-630, (2015).

DOI: 10.1016/j.compstruct.2014.12.070

Google Scholar

[23] I. Belkorissat, M. S. A. Houari, A. Tounsi, E. A. Adda Bedia, S. R. Mahmoud, On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model,, Steel Compos. Struct., Int. J., 18(4), 1063-1081, (2015).

DOI: 10.12989/scs.2015.18.4.1063

Google Scholar

[24] S. Benguediab, A. Tounsi, M. Zidour, A. Semmah, Chirality and scale rffects on mechanical buckling properties of zigzag double-walled carbon nanotubes,, Composites Part B, 57, 21-24, (2014).

DOI: 10.1016/j.compositesb.2013.08.020

Google Scholar

[25] Y. M. Fu, J. W. Hong, X. Q. Wang, Analysis of nonlinear vibration for embedded carbon nanotubes, J. Sound Vib. 296 (2006) 746-756.

DOI: 10.1016/j.jsv.2006.02.024

Google Scholar

[26] M. S. A. Houari, A. Tounsi, A. Bessaim, S. R. Mahmoud, A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates,, Steel and Composite Structures, 22(2), 257 – 276, (2016).

DOI: 10.12989/scs.2016.22.2.257

Google Scholar

[27] A. Tounsi, M. S. A. Houari, and A. Bessaim, A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate,, Struct. Eng. Mech., Int. J., 60(4), 547 - 565, (2016).

DOI: 10.12989/sem.2016.60.4.547

Google Scholar

[28] M. Bennoun, M. S. A. Houari, A. Tounsi, A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates,, Mechanics of Advanced Materials and Structures, 23(4), 423 – 431, (2016).

DOI: 10.1080/15376494.2014.984088

Google Scholar

[29] S. Ait Yahia, H. Ait Atmane, M. S. A. Houari, A. Tounsi, Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories,, Structural Engineering and Mechanics, 53(6), 1143 – 1165, (2015).

DOI: 10.12989/sem.2015.53.6.1143

Google Scholar

[30] A. Mahi, E. A. Adda Bedia, A. Tounsi, A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates,, Applied Mathematical Modelling, 39, 2489–2508, (2015).

DOI: 10.1016/j.apm.2014.10.045

Google Scholar

[31] A. Hamidi, M. S. A. Houari, S. R. Mahmoud, A. Tounsi, A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates,, Steel and Composite Structures, 18(1), 235 – 253, (2015).

DOI: 10.12989/scs.2015.18.1.235

Google Scholar

[32] F. Bourada, K. Amara, A. Tounsi, Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory ,,Steel and Composite Structures, 21(6), 1287-1306, (2016).

DOI: 10.12989/scs.2016.21.6.1287

Google Scholar

[33] A. A. Bousahla, M. S. A. Houari, A. Tounsi, E. A. Adda Bedia, A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates,, Int. J. Computat. Method., 11(6), 1350082, (2014).

DOI: 10.1142/s0219876213500825

Google Scholar

[34] H. Bellifa, K. H. Benrahou, L. Hadji, M. S. A. Houari, A. Tounsi, Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position,, J Braz. Soc. Mech. Sci. Eng., 38(1), 265-275, (2016).

DOI: 10.1007/s40430-015-0354-0

Google Scholar

[35] B. Bouderba, M. S. A. Houari, A. Tounsi, Thermomechanical bending response of FGM thick plates resting on Winkler–Pasternak elastic foundations,, Steel and Composite Structures, 14(1), 85-104, (2013).

DOI: 10.12989/scs.2013.14.1.085

Google Scholar

[36] Y. Wu, X. Zhang, A. Y. T. Leung, W. Zhong, An energy-equivalent model on studying the mechanical properties of single-walled carbon nanotubes, Thin-Walled Struct. 44 (2006) 667-676.

DOI: 10.1016/j.tws.2006.05.003

Google Scholar

[37] A. C. Eringen, Nonlocal polar elastic continua, Int. J. Eng. Sci. 10 (1972) 1-16.

Google Scholar

[38] A. C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys. 54 (1983) 4703-4710.

DOI: 10.1063/1.332803

Google Scholar

[39] A. Tounsi, A. Semmah, A. A. Bousahla, Thermal buckling behavior of nanobeam using an efficient higher-order nonlocal beam theory, Journal of Nanomechanics and Micromechanics (ASCE). 3 (2013) 37-42.

DOI: 10.1061/(asce)nm.2153-5477.0000057

Google Scholar

[40] L. Boumia, M. Zidour, A. Benzair and A. Tounsi, Timoshenko beam model for vibration analysis of chiral single-walled carbon nanotubes, Physica E. 59 (2014) 186-191.

DOI: 10.1016/j.physe.2014.01.020

Google Scholar

[41] M. Zidour, T. H. Daouadji, K. H. Benrahou, A. Tounsi, E. A. Bedia, L. Hadji, Buckling analysis of chiral single-walled carbon nanotubes by using the nonlocal timoshenko beam theory, Mechanics of Composite Materials. 50 (1) (2014) 95-104.

DOI: 10.1007/s11029-014-9396-0

Google Scholar

[42] M. Gürses, B. Akgöz, O. Civalek, Mathematical modeling of vibration problem of nano-sized annular sector plates using the nonlocal continuum theory via eight-node discrete singular convolution transformation,, Applied Mathematics and Computation 219 (6), 3226-3240, (2012).

DOI: 10.1016/j.amc.2012.09.062

Google Scholar

[43] S. Benguediab, A. Tounsi, M. Zidour, A. Semmah, Chirality and scale rffects on mechanical buckling properties of zigzag double-walled carbon nanotubes,, Composites Part B, 57, 21-24, (2014).

DOI: 10.1016/j.compositesb.2013.08.020

Google Scholar

[44] Y. Tokio, Recent development of carbon nanotube, Synth Met. 70 (1995) 1511-1518.

Google Scholar

[45] A. C. Eringen, Nonlocal Polar Field Models, Academic Press, New York, (1976).

Google Scholar

[46] M. Bourada, A. Kaci, M. S. A. Houari, A. Tounsi, A new simple shear and normal deformations theory for functionally graded beams, Steel and Composite Structures. 18(2) (2015) 409-423.

DOI: 10.12989/scs.2015.18.2.409

Google Scholar

[47] S. P. Timoshenko, On the Correction for Shear of the Differential Equation for Transverse Vibrations of Prismatic Bars, Philosophical Magazine. 41 (1921) 744-746.

DOI: 10.1080/14786442108636264

Google Scholar

[48] J. Avsec, M. Oblak, Thermal vibrational analysis for simply supported beam and clamped beam, J. Sound Vib. 308(2007) 514-525.

DOI: 10.1016/j.jsv.2007.04.002

Google Scholar

[49] Y. C. Zhang, X. Wang, Thermal effects on interfacial stress transfer characteristics of carbon nanotubes/polymer composites, Int. J. Solids Struct. 42 (2005) 5399-5412.

DOI: 10.1016/j.ijsolstr.2005.02.038

Google Scholar