[1]
H. Nykyforchyn, V. Kyryliv, O. Maksymiv, Chapter 2: Physical and mechanical properties of surface nanocrystalline structures, generated by severe thermal-plastic deformation, in: O. Fesenko, L. Yatsenko (Eds.), Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications, Springer, Inbunden, 2014, p.31.
DOI: 10.1007/978-3-319-06611-0_2
Google Scholar
[2]
V.I. Kyryliv, Surface saturation of steel with carbon during mechanical-pulse treatment, Material Science 35 (1999) 853-858.
DOI: 10.1007/bf02359467
Google Scholar
[3]
V.I. Kyryliv, Improvement of the wear resistance of medium–carbon steel by nanodispersion of surface layers, Materials Science. 48 (2012) 119-123.
DOI: 10.1007/s11003-012-9481-2
Google Scholar
[4]
Nykyforchyn H., Kyryliv V., Maksymiv О. Wear resistance of steels with surface nanocrystalline structure generated by mechanical-pulse treatment, Nanoscale Research Letters. 12 (2017) 1-5.
DOI: 10.1186/s11671-017-1917-z
Google Scholar
[5]
Nykyforchyn H., Kyryliv V., Maksymiv O., Effect of nanostructurisation for structural steels on their wear hydrogen embittlement resistance, Solid State Phenomena. 225 (2015) 65-70.
DOI: 10.4028/www.scientific.net/ssp.225.65
Google Scholar
[6]
Kyryliv V.I., Chaikovs'kyi B.P., Maksymiv O.V., Shal'ko A.V., Contact fatigue of 20KHN3A steel with surface nanostructure, Materials Science, 51 (2016) 833–838.
DOI: 10.1007/s11003-016-9909-1
Google Scholar
[7]
Nykyforchyn H.M., Lunarska E., Kyryliv V.І., Maksymiv О.V., Hydrogen permeability of the surface nanocrystalline structures of carbon steel, Materials Science. 50 (2015) 698-705.
DOI: 10.1007/s11003-015-9774-3
Google Scholar
[8]
Nykyforchyn H., Kyryliv V., Maksymiv О., Slobodyan Z., Tsyrulnyk O., Formation of surface corrosion-resistant nanocrystalline structures on steel, Nanoscale Research Letters. 11 (2016) 1-6.
DOI: 10.1186/s11671-016-1266-3
Google Scholar
[9]
Kyryliv V.I., Chaikovs'kyi B.P., Maksymiv O.V., Shal'ko A.V., Sydor, P.Y. Serviceability of 60KH2M roll steel with surface nanostructure, Material Science. 52 (2017) 848-853.
DOI: 10.1007/s11003-017-0030-x
Google Scholar
[10]
Kalichak T.N., Kyryliv V.I., Fenchin S.V., Mechanopulsed hardening of long components of the hydraulic cylinder rod type, Soviet materials science transl. of Fiziko-khimicheskaya mekhanika materialov. 25 (1989) 96-99.
DOI: 10.1007/bf00727938
Google Scholar
[11]
Akselrud L.G., Gryn' Yu.M., Zavaliy P.Yu. et al., Use of the CSD program package for structure determination from data, in: Abstr. of the European Powder Diffraction Conf., ( Enshede, Netherlands, 1992), Material Science. 41 (1993) 133–140.
DOI: 10.4028/www.scientific.net/msf.133-136.335
Google Scholar
[12]
Kraus W., Nolze G., POWDER CELL - a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns, Journal of Applied Crystallography. 29 (1996) 301-303.
DOI: 10.1107/s0021889895014920
Google Scholar
[13]
Berezhnitskaya M.F., Gritsishin P.M., Formation of residual stresses in surface layers by combined treatment, Soviet materials science transl. of Fiziko-khimicheskaya mekhanika materialov. 25 (1989) 95-96.
DOI: 10.1007/bf00727937
Google Scholar
[14]
Gavrilyuk V.G., Gertsriken D.S., Polushkin Yu.A., Fal'chenko V.M., Mechanisms of cementite decomposition upon plastic deformation of steel, Physics of Metals and Metallography. 51 (1981) 125–129.
Google Scholar
[15]
Glikman E.E., Bruver R.E., Krasov A.A., Trubin S.V., Intergranular cold brittleness of solid solutions based on alpha iron, Soviet Physics Journal. 17 (1974) 28-33.
DOI: 10.1007/bf00889910
Google Scholar