Fatigue and Corrosion Fatigue of the Roll Steels with Surface Nanostructure

Article Preview

Abstract:

Fatigue and corrosion fatigue of 50KhN and 60Kh2M roll steels with surface nanocrystalline structure induced by mechanical-pulse treatment were studied. The increment of fatigue and corrosion fatigue of the steels with surface nanocrystalline structure were shown and revealed the factors which causes this increment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

92-97

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Nykyforchyn, V. Kyryliv, O. Maksymiv, Chapter 2: Physical and mechanical properties of surface nanocrystalline structures, generated by severe thermal-plastic deformation, in: O. Fesenko, L. Yatsenko (Eds.), Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications, Springer, Inbunden, 2014, p.31.

DOI: 10.1007/978-3-319-06611-0_2

Google Scholar

[2] V.I. Kyryliv, Surface saturation of steel with carbon during mechanical-pulse treatment, Material Science 35 (1999) 853-858.

DOI: 10.1007/bf02359467

Google Scholar

[3] V.I. Kyryliv, Improvement of the wear resistance of medium–carbon steel by nanodispersion of surface layers, Materials Science. 48 (2012) 119-123.

DOI: 10.1007/s11003-012-9481-2

Google Scholar

[4] Nykyforchyn H., Kyryliv V., Maksymiv О. Wear resistance of steels with surface nanocrystalline structure generated by mechanical-pulse treatment, Nanoscale Research Letters. 12 (2017) 1-5.

DOI: 10.1186/s11671-017-1917-z

Google Scholar

[5] Nykyforchyn H., Kyryliv V., Maksymiv O., Effect of nanostructurisation for structural steels on their wear hydrogen embittlement resistance, Solid State Phenomena. 225 (2015) 65-70.

DOI: 10.4028/www.scientific.net/ssp.225.65

Google Scholar

[6] Kyryliv V.I., Chaikovs'kyi B.P., Maksymiv O.V., Shal'ko A.V., Contact fatigue of 20KHN3A steel with surface nanostructure, Materials Science, 51 (2016) 833–838.

DOI: 10.1007/s11003-016-9909-1

Google Scholar

[7] Nykyforchyn H.M., Lunarska E., Kyryliv V.І., Maksymiv О.V., Hydrogen permeability of the surface nanocrystalline structures of carbon steel, Materials Science. 50 (2015) 698-705.

DOI: 10.1007/s11003-015-9774-3

Google Scholar

[8] Nykyforchyn H., Kyryliv V., Maksymiv О., Slobodyan Z., Tsyrulnyk O., Formation of surface corrosion-resistant nanocrystalline structures on steel, Nanoscale Research Letters. 11 (2016) 1-6.

DOI: 10.1186/s11671-016-1266-3

Google Scholar

[9] Kyryliv V.I., Chaikovs'kyi B.P., Maksymiv O.V., Shal'ko A.V., Sydor, P.Y. Serviceability of 60KH2M roll steel with surface nanostructure, Material Science. 52 (2017) 848-853.

DOI: 10.1007/s11003-017-0030-x

Google Scholar

[10] Kalichak T.N., Kyryliv V.I., Fenchin S.V., Mechanopulsed hardening of long components of the hydraulic cylinder rod type, Soviet materials science transl. of Fiziko-khimicheskaya mekhanika materialov. 25 (1989) 96-99.

DOI: 10.1007/bf00727938

Google Scholar

[11] Akselrud L.G., Gryn' Yu.M., Zavaliy P.Yu. et al., Use of the CSD program package for structure determination from data, in: Abstr. of the European Powder Diffraction Conf., ( Enshede, Netherlands, 1992), Material Science. 41 (1993) 133–140.

DOI: 10.4028/www.scientific.net/msf.133-136.335

Google Scholar

[12] Kraus W., Nolze G., POWDER CELL - a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns, Journal of Applied Crystallography. 29 (1996) 301-303.

DOI: 10.1107/s0021889895014920

Google Scholar

[13] Berezhnitskaya M.F., Gritsishin P.M., Formation of residual stresses in surface layers by combined treatment, Soviet materials science transl. of Fiziko-khimicheskaya mekhanika materialov. 25 (1989) 95-96.

DOI: 10.1007/bf00727937

Google Scholar

[14] Gavrilyuk V.G., Gertsriken D.S., Polushkin Yu.A., Fal'chenko V.M., Mechanisms of cementite decomposition upon plastic deformation of steel, Physics of Metals and Metallography. 51 (1981) 125–129.

Google Scholar

[15] Glikman E.E., Bruver R.E., Krasov A.A., Trubin S.V., Intergranular cold brittleness of solid solutions based on alpha iron, Soviet Physics Journal. 17 (1974) 28-33.

DOI: 10.1007/bf00889910

Google Scholar