[1]
E. P. Vanndamme, P. Janson, and L. Deferen, Modelling the subthresholdswing in MOSFETS, IEEE Electron Device Letters. vol. 18, no.8, pp .369-371, Aug. (1997).
Google Scholar
[2]
Young KK. Short-channel effect in fully-depleted SOI MOSFETs. IEEE T Electron Dev 1989; 36: 399-402.
DOI: 10.1109/16.19942
Google Scholar
[3]
Skotnicki T, Merckel G, Pedron T. The voltage-doping transformation and new approach to the modeling of MOSFETs short-channel effects. IEEE Electr Device L 1988; 9: 109-112.
DOI: 10.1109/55.2058
Google Scholar
[4]
Vimala, P.; and Balamurugan, N.B. (2013). Modelling and simulation of centroid and inversion charge density in cylindrical surrounding gateMOSFETs including quantum effects.Journal of Semiconductors,34(11), 1-6.
DOI: 10.1088/1674-4926/34/11/114001
Google Scholar
[5]
C.Usha and Dr.P.Vimala,A Tunneling FET exploiting in various Structure and Different Models: Review in IEEE ICIIECS'15 at Karpagam College of Engineering, Coimbatore, Tamilnadu, India.
DOI: 10.1109/iciiecs.2015.7192878
Google Scholar
[6]
Colinge JP. Multiple-gate SOI MOSFETs. Solid State Electron 2004; 48: 897-905.
DOI: 10.1016/j.sse.2003.12.020
Google Scholar
[7]
Park JT, Colinge JP. Multiple-gate SOI MOSFETs: device design guidelines. IEEE T Electron Dev 2002; 49.
DOI: 10.1109/ted.2002.805634
Google Scholar
[8]
Kranti A, Haldar S, Gupta RS. Analytical model for threshold voltage and I-V characteristics of fully depleted short channel cylindrical/surrounding gate MOSFET. Microelectron Eng 2001; 56: 241-259.
DOI: 10.1016/s0167-9317(00)00419-6
Google Scholar
[9]
Seabaugh AC, Zhang Q. Low-voltage tunnel transistors for beyond CMOS logic. P IEEE 2010; 98: 2095-2110.
DOI: 10.1109/jproc.2010.2070470
Google Scholar
[10]
Ionescu AM, Riel H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature 2011; 479: 329-337.
DOI: 10.1038/nature10679
Google Scholar
[11]
Lu H, Seabaugh A. Tunnel field-effect transistors: state-of-the-art. IEEE J Electron Devices Soc 2014; 2: 44-49.nnel field-effect transistor", J.Appl.Phys.,vol.107,np. 2, pp.024518-6, Jan. (2010).
DOI: 10.1109/jeds.2014.2326622
Google Scholar
[12]
A. S. Verhulst, B.Soree, D.Leonelli, W.G. Vandenberghe, and G.Groeseneken, Modelling the single-gate, double-gate, and gate-all-around tunnel field effect transistors,, J. Appl. Phys., vol. 107, no. 2, pp.024518-1–024518-6, (2010).
DOI: 10.1063/1.3277044
Google Scholar
[13]
Zhang L, Lin X, He J, Chan M. An analytical charge model for double-gate tunnel FETs. IEEE T Electron Dev 2012; 59: 3217-3223.
DOI: 10.1109/ted.2012.2217145
Google Scholar
[14]
E.O. Kane,Zener tunneling in semiconductors,,J.Phys.Chem.Solids, vol.12,no. 2,pp.181-188, Jan.(1960).
Google Scholar
[15]
Bhushan B, Nayak K, Rao VR. DC compact model for SOI tunnel field- effect transistors. IEEE T Electron Dev 2012; 59: 2635-2642.
DOI: 10.1109/ted.2012.2209180
Google Scholar
[16]
Cui N, Liu L, Xie Q, Tan Z, Liang R, Wang J, Xu J. A two-dimensional analytical model for tunnel field effect transistor and its applications. Jpn J Appl Phys 2013; 52: 0443031.
DOI: 10.7567/jjap.52.044303
Google Scholar
[17]
Wan J, Royer CL, Zaslavsky A, Cristoloveanu S. A tunneling field effect transistor model combining inter-band tunneling with channel transport. J Appl Phys 2011; 110: 10450301.
DOI: 10.1063/1.3658871
Google Scholar
[18]
Lee MJ, Choi W. Analytical model of single-gate silicon-on-insulator (SOI) tunneling field-effect transistors (TFETs). Solid State Electron 2011; 63: 110-114.
DOI: 10.1016/j.sse.2011.05.008
Google Scholar
[19]
Bardon MG, Neves HP, Puers R, Van HC. Pseudo-two-dimensional model for double-gate tunnel FETs considering the junctions depletion regions. IEEE T Electron Dev 2010; 57: 827-834.
DOI: 10.1109/ted.2010.2040661
Google Scholar
[20]
Pan A, Chui CO. A quasi-analytical model for double-gate tunneling field-effect transistors. IEEE Electr Device L 2012; 33: 1468-1470.
DOI: 10.1109/led.2012.2208933
Google Scholar
[21]
Hraziia, Vladimirescu A, Amara A, Anghel C. An analysis on the ambipolar current in Si double-gate tunnel FETs. Solid State Electron 2012; 70: 67-72.
DOI: 10.1016/j.sse.2011.11.009
Google Scholar
[22]
Yadav M, Bulusu A, Dasgupta S. Two dimensional analytical modeling for asymmetric 3T and 4T double gate tunnel FET in sub-threshold region: potential and electric field. Microelectr J 2013; 44: 1251-1259.
DOI: 10.1016/j.mejo.2013.08.011
Google Scholar
[23]
Narang R, Saxena M, Gupta RS, Gupta M. Drain current model for a gate all around (GAA) p-n-p-n tunnel FET. Microelectr J 2013; 44: 479-488.
DOI: 10.1016/j.mejo.2013.04.002
Google Scholar
[24]
Vishnoi R, Kumar MJ. Compact analytical drain current model of gate-all-around nanowire tunneling FET. IEEE T Electron Dev 2014; 61: 2599-2603.
DOI: 10.1109/ted.2014.2322762
Google Scholar
[25]
Dash S, Mishra GP. A 2-D analytical cylindrical gate tunnel FET (CG-TFET) model: impact of shortest tunneling distance. Advances in Natural Sciences: Nanoscience and Nanotechnology 2015; 6: 035005-1-10.
DOI: 10.1088/2043-6262/6/3/035005
Google Scholar
[26]
J. Wan, C. L. Royer, A. Zaslavsky, and S. Cristoloveanu, A tunneling field effect transistor model combining interband tunneling with channel transport, J. Appl. Phys., vol. 110, no. 10, pp.104503-1–104503-7, (2011).
DOI: 10.1063/1.3658871
Google Scholar
[27]
Rajat Vishnoi and M.Jagadesh Kumar, Compact Analytical Drain Current Model of Gate-All- Around Nanowire Tunneling FET, IEEE Transactions on Electron Devices., vol. 61, No. 7, pp.2599-2603, (2014).
DOI: 10.1109/ted.2014.2322762
Google Scholar