Investigation on the Silver Nanowire/Graphene Transparent Electrode in Electrochromic Device

Abstract:

Article Preview

In this work, we fabricated a flexible silver nanowires (Ag NWs)/graphene transparent conducting film on polyethylene terephthalate (PET) substrate, which was applied in an electrochromic device. The graphene layer was coated on the surface of the Ag NW film utilizing the electrostatic adsorption in order to improve the stability of the metallic nanowire layer and the performance of the electrochromic device. The Ag NWs/graphene composite film exhibited an optical transmittance of 82.5% at 550 nm and a sheet resistance of 57.5 Ω/sq. With the concentration of the adsorbed graphene increased, the transmittance and conductivity of the composite film both decreased. Furthermore, the lifetime of the electrochromic devices based on the tungsten oxide (WO3) thin film and the Ag NW/graphene composite electrodes was greatly extended, compared to that utilizing the pristine Ag NW electrodes. The results indicate that the introduction of the graphene layer could protect the Ag NW film from corrosion of the electrolyte layer, and greatly improve the lifetime and cycle numbers of the electrochromic device. Key words: silver nanowire; graphene; transparent electrode; electrochromic devices

Info:

Periodical:

Pages:

82-90

Citation:

F. Duan et al., "Investigation on the Silver Nanowire/Graphene Transparent Electrode in Electrochromic Device", Journal of Nano Research, Vol. 55, pp. 82-90, 2018

Online since:

November 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] Y. Tian, W. Zhang, S. Cong, Y. Zheng, F. Geng, Z. Zhao, Unconventional Aluminum Ion Intercalation/Deintercalation for Fast Switching and Highly Stable Electrochromism, Advanced Functional Materials, 25 (2015) 5833-5839.

DOI: https://doi.org/10.1002/adfm.201502638

[2] G. Sonmez, Polymeric electrochromics, Chemical communications, (2005) 5251-5259.

[3] T. Ishinabe, A. Sato, H. Fujikake, Wide-viewing-angle flexible liquid crystal displays with optical compensation of polycarbonate substrates, Applied Physics Express, 7 (2014) 111701.

DOI: https://doi.org/10.7567/apex.7.111701

[4] X. He, R. He, A.l. Liu, X. Chen, Z. Zhao, S. Feng, N. Chen, M. Zhang, A highly conductive, flexible, transparent composite electrode based on the lamination of silver nanowires and polyvinyl alcohol, J. Mater. Chem. C, 2 (2014) 9737-9745.

DOI: https://doi.org/10.1039/c4tc01484g

[5] S. Kirchmeyer, K. Reuter, Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene), Journal of Materials Chemistry, 15 (2005) (2077).

DOI: https://doi.org/10.1039/b417803n

[6] W. Cai, Y. Zhu, X. Li, R.D. Piner, R.S. Ruoff, Large area few-layer graphene/graphite films as transparent thin conducting electrodes, Applied Physics Letters, 95 (2009) 123115.

DOI: https://doi.org/10.1063/1.3220807

[7] N.O. Weiss, H. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, X. Duan, Graphene: an emerging electronic material, Advanced materials, 24 (2012) 5782-5825.

DOI: https://doi.org/10.1002/adma.201201482

[8] M.S. Miller, J.C. O'Kane, A. Niec, R.S. Carmichael, T.B. Carmichael, Silver nanowire/optical adhesive coatings as transparent electrodes for flexible electronics, ACS applied materials & interfaces, 5 (2013) 10165-10172.

DOI: https://doi.org/10.1021/am402847y

[9] D.S. Leem, A. Edwards, M. Faist, J. Nelson, D.D. Bradley, J.C. de Mello, Efficient organic solar cells with solution-processed silver nanowire electrodes, Advanced materials, 23 (2011) 4371-4375.

DOI: https://doi.org/10.1002/adma.201100871

[10] H. Guo, N. Lin, Y. Chen, Z. Wang, Q. Xie, T. Zheng, N. Gao, S. Li, J. Kang, D. Cai, D.L. Peng, Copper nanowires as fully transparent conductive electrodes, Scientific reports, 3 (2013) 2323.

DOI: https://doi.org/10.1038/srep02323

[11] T. Kim, A. Canlier, G.H. Kim, J. Choi, M. Park, S.M. Han, Electrostatic spray deposition of highly transparent silver nanowire electrode on flexible substrate, ACS applied materials & interfaces, 5 (2013) 788-794.

DOI: https://doi.org/10.1021/am3023543

[12] B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, K. Kempa, Uniform Self-Forming Metallic Network as a High-Performance Transparent Conductive Electrode, Advanced materials, 26 (2014).

DOI: https://doi.org/10.1002/adma.201470039

[13] E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, S. Choulis, Thermal degradation mechanisms of PEDOT:PSS, Organic Electronics, 10 (2009) 61-66.

DOI: https://doi.org/10.1016/j.orgel.2008.10.008

[14] R.B. Pode, C.J. Lee, D.G. Moon, J.I. Han, Transparent conducting metal electrode for top emission organic light-emitting devices: Ca–Ag double layer, Applied Physics Letters, 84 (2004) 4614-4616.

DOI: https://doi.org/10.1063/1.1756674

[15] D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, J.-P. Simonato, Flexible transparent conductive materials based on silver nanowire networks: a review, Nanotechnology, 24 (2013) 452001.

DOI: https://doi.org/10.1088/0957-4484/24/45/452001

[16] R. Chen, S.R. Das, C. Jeong, M.R. Khan, D.B. Janes, M.A. Alam, Co-Percolating Graphene-Wrapped Silver Nanowire Network for High Performance, Highly Stable, Transparent Conducting Electrodes, Advanced Functional Materials, 23 (2013) 5150-5158.

DOI: https://doi.org/10.1002/adfm.201300124

[17] M.S. Lee, K. Lee, S.Y. Kim, H. Lee, J. Park, K.H. Choi, H.K. Kim, D.G. Kim, D.Y. Lee, S. Nam, J.U. Park, High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures, Nano letters, 13 (2013) 2814-2821.

DOI: https://doi.org/10.1021/nl401070p

[18] X. He, M. Zhang, S.Y. Yang, Large Scale Synthesis of Silver Nanowires with High Aspect Ratios by Glucose and Fe3+, Advanced Materials Research, 529 (2012) 541-545.

DOI: https://doi.org/10.4028/www.scientific.net/amr.529.541

[19] J. Wang, Z. Gao, Z. Li, B. Wang, Y. Yan, Q. Liu, T. Mann, M. Zhang, Z. Jiang, Green synthesis of graphene nanosheets/ZnO composites and electrochemical properties, Journal of Solid State Chemistry, 184 (2011) 1421-1427.

DOI: https://doi.org/10.1016/j.jssc.2011.03.006

[20] T. Tsuchiya, K. Terabe, M. Aono, Micro x-ray photoemission and Raman spectroscopic studies on bandgap tuning of graphene oxide achieved by solid state ionics device, Applied Physics Letters, 105 (2014) 183101.

DOI: https://doi.org/10.1063/1.4901103

[21] J. Yi Luo, X. Xian Chen, W. Da Li, W. Yuan Deng, W. Li, H. Yuan Wu, L. Feng Zhu, Q. Guang Zeng, Variable-temperature Raman spectroscopic study of the hydrogen sensing mechanism in Pt-WO3 nanowire film, Applied Physics Letters, 102 (2013) 113104.

DOI: https://doi.org/10.1063/1.4798280