Investigation on the Silver Nanowire/Graphene Transparent Electrode in Electrochromic Device

Article Preview

Abstract:

In this work, we fabricated a flexible silver nanowires (Ag NWs)/graphene transparent conducting film on polyethylene terephthalate (PET) substrate, which was applied in an electrochromic device. The graphene layer was coated on the surface of the Ag NW film utilizing the electrostatic adsorption in order to improve the stability of the metallic nanowire layer and the performance of the electrochromic device. The Ag NWs/graphene composite film exhibited an optical transmittance of 82.5% at 550 nm and a sheet resistance of 57.5 Ω/sq. With the concentration of the adsorbed graphene increased, the transmittance and conductivity of the composite film both decreased. Furthermore, the lifetime of the electrochromic devices based on the tungsten oxide (WO3) thin film and the Ag NW/graphene composite electrodes was greatly extended, compared to that utilizing the pristine Ag NW electrodes. The results indicate that the introduction of the graphene layer could protect the Ag NW film from corrosion of the electrolyte layer, and greatly improve the lifetime and cycle numbers of the electrochromic device. Key words: silver nanowire; graphene; transparent electrode; electrochromic devices

You might also be interested in these eBooks

Info:

Periodical:

Pages:

82-90

Citation:

Online since:

November 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Tian, W. Zhang, S. Cong, Y. Zheng, F. Geng, Z. Zhao, Unconventional Aluminum Ion Intercalation/Deintercalation for Fast Switching and Highly Stable Electrochromism, Advanced Functional Materials, 25 (2015) 5833-5839.

DOI: 10.1002/adfm.201502638

Google Scholar

[2] G. Sonmez, Polymeric electrochromics, Chemical communications, (2005) 5251-5259.

Google Scholar

[3] T. Ishinabe, A. Sato, H. Fujikake, Wide-viewing-angle flexible liquid crystal displays with optical compensation of polycarbonate substrates, Applied Physics Express, 7 (2014) 111701.

DOI: 10.7567/apex.7.111701

Google Scholar

[4] X. He, R. He, A.l. Liu, X. Chen, Z. Zhao, S. Feng, N. Chen, M. Zhang, A highly conductive, flexible, transparent composite electrode based on the lamination of silver nanowires and polyvinyl alcohol, J. Mater. Chem. C, 2 (2014) 9737-9745.

DOI: 10.1039/c4tc01484g

Google Scholar

[5] S. Kirchmeyer, K. Reuter, Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene), Journal of Materials Chemistry, 15 (2005) (2077).

DOI: 10.1039/b417803n

Google Scholar

[6] W. Cai, Y. Zhu, X. Li, R.D. Piner, R.S. Ruoff, Large area few-layer graphene/graphite films as transparent thin conducting electrodes, Applied Physics Letters, 95 (2009) 123115.

DOI: 10.1063/1.3220807

Google Scholar

[7] N.O. Weiss, H. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, X. Duan, Graphene: an emerging electronic material, Advanced materials, 24 (2012) 5782-5825.

DOI: 10.1002/adma.201201482

Google Scholar

[8] M.S. Miller, J.C. O'Kane, A. Niec, R.S. Carmichael, T.B. Carmichael, Silver nanowire/optical adhesive coatings as transparent electrodes for flexible electronics, ACS applied materials & interfaces, 5 (2013) 10165-10172.

DOI: 10.1021/am402847y

Google Scholar

[9] D.S. Leem, A. Edwards, M. Faist, J. Nelson, D.D. Bradley, J.C. de Mello, Efficient organic solar cells with solution-processed silver nanowire electrodes, Advanced materials, 23 (2011) 4371-4375.

DOI: 10.1002/adma.201100871

Google Scholar

[10] H. Guo, N. Lin, Y. Chen, Z. Wang, Q. Xie, T. Zheng, N. Gao, S. Li, J. Kang, D. Cai, D.L. Peng, Copper nanowires as fully transparent conductive electrodes, Scientific reports, 3 (2013) 2323.

DOI: 10.1038/srep02323

Google Scholar

[11] T. Kim, A. Canlier, G.H. Kim, J. Choi, M. Park, S.M. Han, Electrostatic spray deposition of highly transparent silver nanowire electrode on flexible substrate, ACS applied materials & interfaces, 5 (2013) 788-794.

DOI: 10.1021/am3023543

Google Scholar

[12] B. Han, K. Pei, Y. Huang, X. Zhang, Q. Rong, Q. Lin, Y. Guo, T. Sun, C. Guo, D. Carnahan, M. Giersig, Y. Wang, J. Gao, Z. Ren, K. Kempa, Uniform Self-Forming Metallic Network as a High-Performance Transparent Conductive Electrode, Advanced materials, 26 (2014).

DOI: 10.1002/adma.201302950

Google Scholar

[13] E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, S. Choulis, Thermal degradation mechanisms of PEDOT:PSS, Organic Electronics, 10 (2009) 61-66.

DOI: 10.1016/j.orgel.2008.10.008

Google Scholar

[14] R.B. Pode, C.J. Lee, D.G. Moon, J.I. Han, Transparent conducting metal electrode for top emission organic light-emitting devices: Ca–Ag double layer, Applied Physics Letters, 84 (2004) 4614-4616.

DOI: 10.1063/1.1756674

Google Scholar

[15] D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, J.-P. Simonato, Flexible transparent conductive materials based on silver nanowire networks: a review, Nanotechnology, 24 (2013) 452001.

DOI: 10.1088/0957-4484/24/45/452001

Google Scholar

[16] R. Chen, S.R. Das, C. Jeong, M.R. Khan, D.B. Janes, M.A. Alam, Co-Percolating Graphene-Wrapped Silver Nanowire Network for High Performance, Highly Stable, Transparent Conducting Electrodes, Advanced Functional Materials, 23 (2013) 5150-5158.

DOI: 10.1002/adfm.201300124

Google Scholar

[17] M.S. Lee, K. Lee, S.Y. Kim, H. Lee, J. Park, K.H. Choi, H.K. Kim, D.G. Kim, D.Y. Lee, S. Nam, J.U. Park, High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures, Nano letters, 13 (2013) 2814-2821.

DOI: 10.1021/nl401070p

Google Scholar

[18] X. He, M. Zhang, S.Y. Yang, Large Scale Synthesis of Silver Nanowires with High Aspect Ratios by Glucose and Fe3+, Advanced Materials Research, 529 (2012) 541-545.

DOI: 10.4028/www.scientific.net/amr.529.541

Google Scholar

[19] J. Wang, Z. Gao, Z. Li, B. Wang, Y. Yan, Q. Liu, T. Mann, M. Zhang, Z. Jiang, Green synthesis of graphene nanosheets/ZnO composites and electrochemical properties, Journal of Solid State Chemistry, 184 (2011) 1421-1427.

DOI: 10.1016/j.jssc.2011.03.006

Google Scholar

[20] T. Tsuchiya, K. Terabe, M. Aono, Micro x-ray photoemission and Raman spectroscopic studies on bandgap tuning of graphene oxide achieved by solid state ionics device, Applied Physics Letters, 105 (2014) 183101.

DOI: 10.1063/1.4901103

Google Scholar

[21] J. Yi Luo, X. Xian Chen, W. Da Li, W. Yuan Deng, W. Li, H. Yuan Wu, L. Feng Zhu, Q. Guang Zeng, Variable-temperature Raman spectroscopic study of the hydrogen sensing mechanism in Pt-WO3 nanowire film, Applied Physics Letters, 102 (2013) 113104.

DOI: 10.1063/1.4798280

Google Scholar