Effects of the Molecular Weight of PCz on Selective Extraction of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes

Article Preview

Abstract:

Due to the difficulty in the selective synthesis of semiconductor (s-) and metal (m-) single-walled carbon nanotubes (SWCNTs), we still need to explore the selective extraction technology of s-SWCNTs. Using Poly[9-(1-octylonoyl)-9H-carbazole-2,7-diyl] (PCz) extraction of s-SWCNTs has attracted extensive attention in recent years, because it can selective extraction of large-diameter s-SWCNTs with high purity. However, influence of the molecular weight of this polymer on the s-SWCNTs selective extraction properties remains unclear. In this study, we used PCz with different average molecular weights to study the ability of selective extraction s-SWCNTs from pristine arc discharge carbon nanotubes. Spectra studies indicate that compared to the PCz with lower molecular weight, the PCz with higher molecular weight has better selective extraction ability, and can help to obtain s-SWCNTs with higher purity (>99%) and high yield. FETs devices have been prepared by s-SWCNTs obtained via PCz with higher molecular weight exhibit higher on/off ratio, lower off current and lower subthreshold swing. This work offers a reference of the design and synthesis of PCz polymer that performs sufficient selective ability in extracting s-SWCNTs with promising applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-21

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.M. Shulaker, G. Hills, N. Patil, H. Wei, H. Chen, H.S.P. Wong, S. Mitra, Carbon nanotube computer, Nature, 501(2013)526-530.

DOI: 10.1038/nature12502

Google Scholar

[2] A. Javey, Q. Wang, M. Lundstrom, H. Dai, J. Guo, Ballistic carbon nanotube field-effect transistors, Nature, 424(2003)654-657.

DOI: 10.1038/nature01797

Google Scholar

[3] N.I.S.K. Saito, Semiconductor-enriched single wall carbon nanotube networks applied to field effect transistors, Applied Physics Letters, (2008)243112.

DOI: 10.1063/1.2939560

Google Scholar

[4] H. Liu, D. Nishide, T. Tanaka, H. Kataura, Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography, Nature Communications, 2(2011)309.

DOI: 10.1038/ncomms1313

Google Scholar

[5] M.S. Arnold, A.A. Green, J.F. Hulvat, S.I. Stupp, M.C. Hersam, Sorting carbon nanotubes by electronic structure using density differentiation, Nature Nanotechnology, 1(2006)60-65.

DOI: 10.1038/nnano.2006.52

Google Scholar

[6] M. Zheng, A. Jagota, M.S. Strano, A.P. Santos, P. Barone, S.G. Chou, B.A. Diner, M.S. Dresselhaus, R.S. McLean, G.B. Onoa, G.G. Samsonidze, E.D. Semke, M. Usrey, D.J. Walls, Structure-based carbon nanotube sorting by sequence-dependent DNA assembly, Science, 302(2003)1545-1548.

DOI: 10.1126/science.1091911

Google Scholar

[7] C.Y. Khripin, J.A. Fagan, M. Zheng, Spontaneous partition of carbon nanotubes in polymer-modified aqueous phases, Journal of the American Chemical Society, 135(2013)6822-6825.

DOI: 10.1021/ja402762e

Google Scholar

[8] A. Nish, J.Y. Hwang, J. Doig, R.J. Nicholas, Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers, Nature Nanotechnology, 2(2007)640-646.

DOI: 10.1038/nnano.2007.290

Google Scholar

[9] H. Wang, Z. Bao, Conjugated polymer sorting of semiconducting carbon nanotubes and their electronic applications, Nano Today, 10(2015)737-758.

DOI: 10.1016/j.nantod.2015.11.008

Google Scholar

[10] M. Tange, T. Okazaki, S. Iijima, Selective extraction of large-diameter single-wall carbon nanotubes with specific chiral indices by poly(9,9-dioctylfluorene-alt-benzothiadiazole), Journal of the American Chemical Society, 133(2011)11908-11911.

DOI: 10.1021/ja204698d

Google Scholar

[11] F. Jakubka, S.P. Schießl, S. Martin, J.M. Englert, F. Hauke, A. Hirsch, J. Zaumseil, Effect of polymer molecular weight and solution parameters on selective dispersion of single-walled carbon nanotubes, ACS Macro Letters, 1(2012)815-819.

DOI: 10.1021/mz300147g

Google Scholar

[12] N.A. Rice, W.J. Bodnaryk, B. Mirka, O.A. Melville, A. Adronov, B.H. Lessard, Polycarbazole-sorted semiconducting single-walled carbon nanotubes for incorporation into organic thin film transistors, Advanced Electronic Materials, (2018)1800539.

DOI: 10.1002/aelm.201800539

Google Scholar

[13] F.A. Lemasson, T. Strunk, P. Gerstel, F. Hennrich, S. Lebedkin, C. Barner-Kowollik, W. Wenzel, M.M. Kappes, M. Mayor, Selective dispersion of single-walled carbon nanotubes with specific chiral indices by poly(N-decyl-2,7-carbazole), Journal of the American Chemical Society, 133(2011)652-655.

DOI: 10.1021/ja105722u

Google Scholar

[14] T. Lei, G. Pitner, X. Chen, G. Hong, S. Park, P. Hayoz, R.T. Weitz, H.P. Wong, Z. Bao, Dispersion of high-purity semiconducting arc-discharged carbon nanotubes using backbone engineered diketopyrrolopyrrole (DPP)-based polymers, Advanced Electronic Materials, 2(2016)1500299.

DOI: 10.1002/aelm.201500299

Google Scholar

[15] T. Lei, Y.C. Lai, G. Hong, H. Wang, P. Hayoz, R.T. Weitz, C. Chen, H. Dai, Z. Bao, Diketopyrrolopyrrole (DPP)-based donor-acceptor polymers for selective dispersion of large-diameter semiconducting carbon nanotubes, Small, 11(2015)2946-2954.

DOI: 10.1002/smll.201403761

Google Scholar

[16] H.W. Lee, Y. Yoon, S. Park, J.H. Oh, S. Hong, L.S. Liyanage, H. Wang, S. Morishita, N. Patil, Y.J. Park, J.J. Park, A. Spakowitz, G. Galli, F. Gygi, P.H.S. Wong, J.B.H. Tok, J.M. Kim, Z. Bao, Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s, Nature Communications, 2(2011)541.

DOI: 10.1038/ncomms1545

Google Scholar

[17] C. Wang, L. Qian, W. Xu, S. Nie, W. Gu, J. Zhang, J. Zhao, J. Lin, Z. Chen, Z. Cui, High performance thin film transistors based on regioregular poly(3-dodecylthiophene)-sorted large diameter semiconducting single-walled carbon nanotubes, Nanoscale, 5(2013)4156.

DOI: 10.1039/c3nr34304a

Google Scholar

[18] P. Zhang, W. Yi, H. Xu, C. Gao, J. Hou, W. Jin, Y. Lei, X. Hou, Supramolecular interactions of poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-thiophene] with single-walled carbon nanotubes, Nanotechnology Reviews, 7(2018)487-495.

DOI: 10.1515/ntrev-2018-0041

Google Scholar

[19] J. Gu, J. Han, D. Liu, X. Yu, L. Kang, S. Qiu, H. Jin, H. Li, Q. Li, J. Zhang, Solution-processable high-purity semiconducting SWCNTs for large-area fabrication of high-performance thin-film transistors, Small, 12(2016)4993-4999.

DOI: 10.1002/smll.201600398

Google Scholar

[20] B. Chen, P. Zhang, L. Ding, J. Han, S. Qiu, Q. Li, Z. Zhang, L. Peng, Highly uniform carbon nanotube field-effect transistors and medium scale integrated circuits, Nano Letters, 16(2016)5120-5128.

DOI: 10.1021/acs.nanolett.6b02046

Google Scholar

[21] Y. Yang, Z. Wang, Z. Xu, K. Wu, X. Yu, X. Chen, Y. Meng, H. Li, S. Qiu, H. Jin, L. Li, Q. Li, Low hysteresis carbon nanotube transistors constructed via a general dry-laminating encapsulation method on diverse surfaces, ACS Applied Materials & Interfaces, 9(2017)14292-14300.

DOI: 10.1021/acsami.7b02684

Google Scholar

[22] Z. Zheng, H. Fang, D. Liu, Z. Tan, X. Gao, W. Hu, H. Peng, L. Tong, W. Hu, J. Zhang, Nonlocal response in infrared detector with semiconducting carbon nanotubes and graphdiyne, Advanced Science, 4(2017)1700472.

DOI: 10.1002/advs.201700472

Google Scholar

[23] H. Huang, F. Wang, Y. Liu, S. Wang, L. Peng, Plasmonic enhanced performance of an infrared detector based on carbon nanotube films, ACS Applied Materials & Interfaces, 9(2017)12743-12749.

DOI: 10.1021/acsami.7b01301

Google Scholar

[24] X. Yu, D. Liu, L. Kang, Y. Yang, X. Zhang, Q. Lv, S. Qiu, H. Jin, Q. Song, J. Zhang, Q. Li, Recycling strategy for fabricating low-cost and high-performance carbon nanotube TFT devices, ACS Applied Materials & Interfaces, 9(2017)15719-15726.

DOI: 10.1021/acsami.7b02964

Google Scholar

[25] Y. Yang, L. Ding, H. Chen, J. Han, Z. Zhang, L. Peng, Carbon nanotube network film-based ring oscillators with sub 10-ns propagation time and their applications in radio-frequency signal transmission, Nano Research, 11(2018)300-310.

DOI: 10.1007/s12274-017-1632-1

Google Scholar

[26] D. Zhong, Z. Zhang, L. Ding, J. Han, M. Xiao, J. Si, L. Xu, C. Qiu, L. Peng, Gigahertz integrated circuits based on carbon nanotube films, Nature Electronics, 1(2018)40-45.

DOI: 10.1038/s41928-017-0003-y

Google Scholar

[27] C. Zhao, D. Zhong, C. Qiu, J. Han, Z. Zhang, L. Peng, Improving subthreshold swing to thermionic emission limit in carbon nanotube network film-based field-effect, Applied Physics Letters, 112(2018)53102.

DOI: 10.1063/1.5017195

Google Scholar

[28] B. Mirka, D. Fong, N.A. Rice, O.A. Melville, A. Adronov, B.H. Lessard, Polyfluorene-sorted semiconducting single-walled carbon nanotubes for applications in thin-film transistors, Chemistry of Materials, 31(2019)2863-2872.

DOI: 10.1021/acs.chemmater.8b05357

Google Scholar

[29] D. Liu, P. Li, X. Yu, J. Gu, J. Han, S. Zhang, H. Li, H. Jin, S. Qiu, Q. Li, J. Zhang, A mixed-extractor strategy for efficient sorting of semiconducting single-walled carbon nanotubes, Advanced Materials, (2016)1603565.

DOI: 10.1002/adma.201603565

Google Scholar

[30] P. Zhang, W. Yi, L. Bai, Y. Tian, J. Hou, W. Jin, J. Si, X. Hou, Enrichment of large-diameter semiconducting single-walled carbon nanotubes by a mixed-extractor strategy, Chemistry-An Asian Journal, 14(2019)3855-3862.

DOI: 10.1002/asia.201901035

Google Scholar

[31] J. Ouyang, J. Ding, J. Lefebvre, Z. Li, C. Guo, A.J. Kell, P.R.L. Malenfant, Sorting of semiconducting single-walled carbon nanotubes in polar solvents with an amphiphilic conjugated polymer provides general guidelines for enrichment, ACS Nano, 12(2018)1910-1919.

DOI: 10.1021/acsnano.7b08818

Google Scholar

[32] J. Ding, Z. Li, J. Lefebvre, F. Cheng, G. Dubey, S. Zou, P. Finnie, A. Hrdina, L. Scoles, G.P. Lopinski, C.T. Kingston, B. Simard, P.R.L. Malenfant, Enrichment of large-diameter semiconducting SWCNTs by polyfluorene extraction for high network density thin film transistors, Nanoscale, 6(2014)2328.

DOI: 10.1039/c3nr05511f

Google Scholar

[33] Z. Li, J. Ding, P. Finnie, J. Lefebvre, F. Cheng, C.T. Kingston, P.R.L. Malenfant, Raman microscopy mapping for the purity assessment of chirality enriched carbon nanotube networks in thin-film transistors, Nano Research, 8(2015)2179-2187.

DOI: 10.1007/s12274-015-0725-y

Google Scholar

[34] S. Lebedkin, K. Arnold, O. Kiowski, F. Hennrich, M.M. Kappes, Raman study of individually dispersed single-walled carbon nanotubes under pressure, Physical Review B, 73(2006).

DOI: 10.1103/physrevb.73.094109

Google Scholar

[35] M.S. Strano, Electronic structure control of single-walled carbon nanotube functionalization, Science, 301(2003)1519-1522.

Google Scholar

[36] M.A. Pimenta, A. Marucci, S.A. Empedocles, M.G. Bawendi, E.B. Hanlon, A.M. Rao, P.C. Eklund, R.E. Smalley, G. Dresselhaus, M.S. Dresselhaus, Raman modes of metallic carbon nanotubes, Physical Review B, 58(1998)16016-16019.

DOI: 10.1103/physrevb.58.r16016

Google Scholar

[37] S. Brown, A. Jorio, P. Corio, M.S. Dresselhaus, G. Dresselhaus, R. Saito, K. Kneipp, Origin of the Breit-Wigner-Fano lineshape of the tangential G-band feature of metallic carbon nanotubes, Physical Review B, 63(2001).

DOI: 10.1103/physrevb.63.155414

Google Scholar

[38] A. Jorio, M.A. Pimenta, A.G.S. Filho, R. Saito, G. Dresselhaus, M.S. Dresselhaus, Characterizing carbon nanotube samples with resonance Raman scattering, New Journal of Physics, 5(2003)139.

DOI: 10.1088/1367-2630/5/1/139

Google Scholar

[39] W. Li, P. Hou, C. Liu, D. Sun, J. Yuan, S. Zhao, L. Yin, H. Cong, H. Cheng, High-quality, highly concentrated semiconducting single-wall carbon nanotubes for use in field effect transistors and biosensors, ACS Nano, 7(2013)6831-6839.

DOI: 10.1021/nn401998r

Google Scholar

[40] Nicole A. Rice, Ayyagari V. Subrahmanyam, Scott E. Laengert, Alex Adronov, The effect of molecular weight on the separation of semiconducting single-walled carbon nanotubes using poly(2,7-carbazole)s. Journal of Polymer science Part A: Polymer Chemistry, 53(2015) 2510-2516.

DOI: 10.1002/pola.27715

Google Scholar

[41] S. P. Schiessl, N. Frohlich, M. Held, F. Gannott, M. Schweiger, M. Forster, U. Scherf and J. Zaumseil, Polymer-sorted semiconducting carbon nanotube networks for high-performance ambipolar field-effect transistors. ACS Applied Materials & Interfaces, 7(2015)682-689.

DOI: 10.1021/am506971b

Google Scholar

[42] K. Iakoubovskii, N. Minami, S. Kazaoui, T. Ueno, Y. Miyata, K. Yanagi, H. Kataura, S. Ohshima, T. Saito, IR-extended photoluminescence mapping of single-wall and double-wall carbon nanotubes, The Journal of Physical Chemistry B, 110(2006)17420-17424.

DOI: 10.1021/jp062653t

Google Scholar

[43] R.B. Weisman, S.M. Bachilo, Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical Kataura Plot, Nano Letters, 3(2003)1235-1238.

DOI: 10.1021/nl034428i

Google Scholar

[44] X. Zhang, J. Zhao, M. Tange, W. Xu, W. Xu, K. Zhang, W. Guo, T. Okazaki, Z. Cui, Sorting semiconducting single walled carbon nanotubes by poly(9,9-dioctylfluorene) derivatives and application for ammonia gas sensing, Carbon, 94(2015)903-910.

DOI: 10.1016/j.carbon.2015.07.072

Google Scholar

[45] A. Draoui, M. Zidour, A. Tounsi, B. Adim, Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT), Journal of Nano Research, 57(2019)117-135.

DOI: 10.4028/www.scientific.net/jnanor.57.117

Google Scholar

[46] A. A. Bousahla, F. Bourada, S. R. Mahmoud, A. Tounsi, Buckling and dynamic behavior of the simply supported cnt-rc beams using an integral-first shear deformation theory. Computers and Concrete, 25(2020)155-166.

Google Scholar

[47] F. Bourada, A. A. Bousahla, A. Tounsi, A. B. E. Abbas, T. Abdelouahed, Stability and dynamic analyses of swcnt reinforced concrete beam resting on elastic-foundation. Computers and Concrete, 25(2020).

Google Scholar

[48] M. Hussain, M. N. Naeem, A. Tounsi, M. Taj, Nonlocal effect on the vibration of armchair and zigzag swcnts with bending rigidity. Advances in nano research, 7(2019) 432-432.

Google Scholar

[49] M. Medani, A. Benahmed, M. Zidour, H. Heireche, S. R. Mahmoud, Static and dynamic behavior of (fg-cnt) reinforced porous sandwich plate using energy principle. Steel and Composite Structures, 32 (2019) 595-610.

Google Scholar

[50] M. Hussain, M. N. Naeem, M. Taj, A. Tounsi, Simulating vibration of single-walled carbon nanotube using rayleigh-ritz's method. Advances in nano research (2020).

Google Scholar

[51] M. S. H. Al-Furjan, H. Safarpour, M. Habibi, M. Safarpour, A. Tounsi, A comprehensive computational approach for nonlinear thermal instability of the electrically fg-gplrc disk based on gdq method. Engineering With Computers, (2020).

DOI: 10.1007/s00366-020-01088-7

Google Scholar

[52] M. S. H. Al-Furjan, M. Habibi, D. W. Jung, S. Sadeghi, G. Chen, A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel. Engineering With Computers, (2020).

DOI: 10.1007/s00366-020-01130-8

Google Scholar

[53] S. Alimirzaei, M. Mohammadimehr, A. Tounsi, Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using fem: msgt electro-magneto-elastic bending, buckling and vibration solutions. Structural Engineering & Mechanics, 71(2019) 485-502.

DOI: 10.12989/sem.2016.59.3.431

Google Scholar