[1]
M.M. Shulaker, G. Hills, N. Patil, H. Wei, H. Chen, H.S.P. Wong, S. Mitra, Carbon nanotube computer, Nature, 501(2013)526-530.
DOI: 10.1038/nature12502
Google Scholar
[2]
A. Javey, Q. Wang, M. Lundstrom, H. Dai, J. Guo, Ballistic carbon nanotube field-effect transistors, Nature, 424(2003)654-657.
DOI: 10.1038/nature01797
Google Scholar
[3]
N.I.S.K. Saito, Semiconductor-enriched single wall carbon nanotube networks applied to field effect transistors, Applied Physics Letters, (2008)243112.
DOI: 10.1063/1.2939560
Google Scholar
[4]
H. Liu, D. Nishide, T. Tanaka, H. Kataura, Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography, Nature Communications, 2(2011)309.
DOI: 10.1038/ncomms1313
Google Scholar
[5]
M.S. Arnold, A.A. Green, J.F. Hulvat, S.I. Stupp, M.C. Hersam, Sorting carbon nanotubes by electronic structure using density differentiation, Nature Nanotechnology, 1(2006)60-65.
DOI: 10.1038/nnano.2006.52
Google Scholar
[6]
M. Zheng, A. Jagota, M.S. Strano, A.P. Santos, P. Barone, S.G. Chou, B.A. Diner, M.S. Dresselhaus, R.S. McLean, G.B. Onoa, G.G. Samsonidze, E.D. Semke, M. Usrey, D.J. Walls, Structure-based carbon nanotube sorting by sequence-dependent DNA assembly, Science, 302(2003)1545-1548.
DOI: 10.1126/science.1091911
Google Scholar
[7]
C.Y. Khripin, J.A. Fagan, M. Zheng, Spontaneous partition of carbon nanotubes in polymer-modified aqueous phases, Journal of the American Chemical Society, 135(2013)6822-6825.
DOI: 10.1021/ja402762e
Google Scholar
[8]
A. Nish, J.Y. Hwang, J. Doig, R.J. Nicholas, Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers, Nature Nanotechnology, 2(2007)640-646.
DOI: 10.1038/nnano.2007.290
Google Scholar
[9]
H. Wang, Z. Bao, Conjugated polymer sorting of semiconducting carbon nanotubes and their electronic applications, Nano Today, 10(2015)737-758.
DOI: 10.1016/j.nantod.2015.11.008
Google Scholar
[10]
M. Tange, T. Okazaki, S. Iijima, Selective extraction of large-diameter single-wall carbon nanotubes with specific chiral indices by poly(9,9-dioctylfluorene-alt-benzothiadiazole), Journal of the American Chemical Society, 133(2011)11908-11911.
DOI: 10.1021/ja204698d
Google Scholar
[11]
F. Jakubka, S.P. Schießl, S. Martin, J.M. Englert, F. Hauke, A. Hirsch, J. Zaumseil, Effect of polymer molecular weight and solution parameters on selective dispersion of single-walled carbon nanotubes, ACS Macro Letters, 1(2012)815-819.
DOI: 10.1021/mz300147g
Google Scholar
[12]
N.A. Rice, W.J. Bodnaryk, B. Mirka, O.A. Melville, A. Adronov, B.H. Lessard, Polycarbazole-sorted semiconducting single-walled carbon nanotubes for incorporation into organic thin film transistors, Advanced Electronic Materials, (2018)1800539.
DOI: 10.1002/aelm.201800539
Google Scholar
[13]
F.A. Lemasson, T. Strunk, P. Gerstel, F. Hennrich, S. Lebedkin, C. Barner-Kowollik, W. Wenzel, M.M. Kappes, M. Mayor, Selective dispersion of single-walled carbon nanotubes with specific chiral indices by poly(N-decyl-2,7-carbazole), Journal of the American Chemical Society, 133(2011)652-655.
DOI: 10.1021/ja105722u
Google Scholar
[14]
T. Lei, G. Pitner, X. Chen, G. Hong, S. Park, P. Hayoz, R.T. Weitz, H.P. Wong, Z. Bao, Dispersion of high-purity semiconducting arc-discharged carbon nanotubes using backbone engineered diketopyrrolopyrrole (DPP)-based polymers, Advanced Electronic Materials, 2(2016)1500299.
DOI: 10.1002/aelm.201500299
Google Scholar
[15]
T. Lei, Y.C. Lai, G. Hong, H. Wang, P. Hayoz, R.T. Weitz, C. Chen, H. Dai, Z. Bao, Diketopyrrolopyrrole (DPP)-based donor-acceptor polymers for selective dispersion of large-diameter semiconducting carbon nanotubes, Small, 11(2015)2946-2954.
DOI: 10.1002/smll.201403761
Google Scholar
[16]
H.W. Lee, Y. Yoon, S. Park, J.H. Oh, S. Hong, L.S. Liyanage, H. Wang, S. Morishita, N. Patil, Y.J. Park, J.J. Park, A. Spakowitz, G. Galli, F. Gygi, P.H.S. Wong, J.B.H. Tok, J.M. Kim, Z. Bao, Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s, Nature Communications, 2(2011)541.
DOI: 10.1038/ncomms1545
Google Scholar
[17]
C. Wang, L. Qian, W. Xu, S. Nie, W. Gu, J. Zhang, J. Zhao, J. Lin, Z. Chen, Z. Cui, High performance thin film transistors based on regioregular poly(3-dodecylthiophene)-sorted large diameter semiconducting single-walled carbon nanotubes, Nanoscale, 5(2013)4156.
DOI: 10.1039/c3nr34304a
Google Scholar
[18]
P. Zhang, W. Yi, H. Xu, C. Gao, J. Hou, W. Jin, Y. Lei, X. Hou, Supramolecular interactions of poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-thiophene] with single-walled carbon nanotubes, Nanotechnology Reviews, 7(2018)487-495.
DOI: 10.1515/ntrev-2018-0041
Google Scholar
[19]
J. Gu, J. Han, D. Liu, X. Yu, L. Kang, S. Qiu, H. Jin, H. Li, Q. Li, J. Zhang, Solution-processable high-purity semiconducting SWCNTs for large-area fabrication of high-performance thin-film transistors, Small, 12(2016)4993-4999.
DOI: 10.1002/smll.201600398
Google Scholar
[20]
B. Chen, P. Zhang, L. Ding, J. Han, S. Qiu, Q. Li, Z. Zhang, L. Peng, Highly uniform carbon nanotube field-effect transistors and medium scale integrated circuits, Nano Letters, 16(2016)5120-5128.
DOI: 10.1021/acs.nanolett.6b02046
Google Scholar
[21]
Y. Yang, Z. Wang, Z. Xu, K. Wu, X. Yu, X. Chen, Y. Meng, H. Li, S. Qiu, H. Jin, L. Li, Q. Li, Low hysteresis carbon nanotube transistors constructed via a general dry-laminating encapsulation method on diverse surfaces, ACS Applied Materials & Interfaces, 9(2017)14292-14300.
DOI: 10.1021/acsami.7b02684
Google Scholar
[22]
Z. Zheng, H. Fang, D. Liu, Z. Tan, X. Gao, W. Hu, H. Peng, L. Tong, W. Hu, J. Zhang, Nonlocal response in infrared detector with semiconducting carbon nanotubes and graphdiyne, Advanced Science, 4(2017)1700472.
DOI: 10.1002/advs.201700472
Google Scholar
[23]
H. Huang, F. Wang, Y. Liu, S. Wang, L. Peng, Plasmonic enhanced performance of an infrared detector based on carbon nanotube films, ACS Applied Materials & Interfaces, 9(2017)12743-12749.
DOI: 10.1021/acsami.7b01301
Google Scholar
[24]
X. Yu, D. Liu, L. Kang, Y. Yang, X. Zhang, Q. Lv, S. Qiu, H. Jin, Q. Song, J. Zhang, Q. Li, Recycling strategy for fabricating low-cost and high-performance carbon nanotube TFT devices, ACS Applied Materials & Interfaces, 9(2017)15719-15726.
DOI: 10.1021/acsami.7b02964
Google Scholar
[25]
Y. Yang, L. Ding, H. Chen, J. Han, Z. Zhang, L. Peng, Carbon nanotube network film-based ring oscillators with sub 10-ns propagation time and their applications in radio-frequency signal transmission, Nano Research, 11(2018)300-310.
DOI: 10.1007/s12274-017-1632-1
Google Scholar
[26]
D. Zhong, Z. Zhang, L. Ding, J. Han, M. Xiao, J. Si, L. Xu, C. Qiu, L. Peng, Gigahertz integrated circuits based on carbon nanotube films, Nature Electronics, 1(2018)40-45.
DOI: 10.1038/s41928-017-0003-y
Google Scholar
[27]
C. Zhao, D. Zhong, C. Qiu, J. Han, Z. Zhang, L. Peng, Improving subthreshold swing to thermionic emission limit in carbon nanotube network film-based field-effect, Applied Physics Letters, 112(2018)53102.
DOI: 10.1063/1.5017195
Google Scholar
[28]
B. Mirka, D. Fong, N.A. Rice, O.A. Melville, A. Adronov, B.H. Lessard, Polyfluorene-sorted semiconducting single-walled carbon nanotubes for applications in thin-film transistors, Chemistry of Materials, 31(2019)2863-2872.
DOI: 10.1021/acs.chemmater.8b05357
Google Scholar
[29]
D. Liu, P. Li, X. Yu, J. Gu, J. Han, S. Zhang, H. Li, H. Jin, S. Qiu, Q. Li, J. Zhang, A mixed-extractor strategy for efficient sorting of semiconducting single-walled carbon nanotubes, Advanced Materials, (2016)1603565.
DOI: 10.1002/adma.201603565
Google Scholar
[30]
P. Zhang, W. Yi, L. Bai, Y. Tian, J. Hou, W. Jin, J. Si, X. Hou, Enrichment of large-diameter semiconducting single-walled carbon nanotubes by a mixed-extractor strategy, Chemistry-An Asian Journal, 14(2019)3855-3862.
DOI: 10.1002/asia.201901035
Google Scholar
[31]
J. Ouyang, J. Ding, J. Lefebvre, Z. Li, C. Guo, A.J. Kell, P.R.L. Malenfant, Sorting of semiconducting single-walled carbon nanotubes in polar solvents with an amphiphilic conjugated polymer provides general guidelines for enrichment, ACS Nano, 12(2018)1910-1919.
DOI: 10.1021/acsnano.7b08818
Google Scholar
[32]
J. Ding, Z. Li, J. Lefebvre, F. Cheng, G. Dubey, S. Zou, P. Finnie, A. Hrdina, L. Scoles, G.P. Lopinski, C.T. Kingston, B. Simard, P.R.L. Malenfant, Enrichment of large-diameter semiconducting SWCNTs by polyfluorene extraction for high network density thin film transistors, Nanoscale, 6(2014)2328.
DOI: 10.1039/c3nr05511f
Google Scholar
[33]
Z. Li, J. Ding, P. Finnie, J. Lefebvre, F. Cheng, C.T. Kingston, P.R.L. Malenfant, Raman microscopy mapping for the purity assessment of chirality enriched carbon nanotube networks in thin-film transistors, Nano Research, 8(2015)2179-2187.
DOI: 10.1007/s12274-015-0725-y
Google Scholar
[34]
S. Lebedkin, K. Arnold, O. Kiowski, F. Hennrich, M.M. Kappes, Raman study of individually dispersed single-walled carbon nanotubes under pressure, Physical Review B, 73(2006).
DOI: 10.1103/physrevb.73.094109
Google Scholar
[35]
M.S. Strano, Electronic structure control of single-walled carbon nanotube functionalization, Science, 301(2003)1519-1522.
Google Scholar
[36]
M.A. Pimenta, A. Marucci, S.A. Empedocles, M.G. Bawendi, E.B. Hanlon, A.M. Rao, P.C. Eklund, R.E. Smalley, G. Dresselhaus, M.S. Dresselhaus, Raman modes of metallic carbon nanotubes, Physical Review B, 58(1998)16016-16019.
DOI: 10.1103/physrevb.58.r16016
Google Scholar
[37]
S. Brown, A. Jorio, P. Corio, M.S. Dresselhaus, G. Dresselhaus, R. Saito, K. Kneipp, Origin of the Breit-Wigner-Fano lineshape of the tangential G-band feature of metallic carbon nanotubes, Physical Review B, 63(2001).
DOI: 10.1103/physrevb.63.155414
Google Scholar
[38]
A. Jorio, M.A. Pimenta, A.G.S. Filho, R. Saito, G. Dresselhaus, M.S. Dresselhaus, Characterizing carbon nanotube samples with resonance Raman scattering, New Journal of Physics, 5(2003)139.
DOI: 10.1088/1367-2630/5/1/139
Google Scholar
[39]
W. Li, P. Hou, C. Liu, D. Sun, J. Yuan, S. Zhao, L. Yin, H. Cong, H. Cheng, High-quality, highly concentrated semiconducting single-wall carbon nanotubes for use in field effect transistors and biosensors, ACS Nano, 7(2013)6831-6839.
DOI: 10.1021/nn401998r
Google Scholar
[40]
Nicole A. Rice, Ayyagari V. Subrahmanyam, Scott E. Laengert, Alex Adronov, The effect of molecular weight on the separation of semiconducting single-walled carbon nanotubes using poly(2,7-carbazole)s. Journal of Polymer science Part A: Polymer Chemistry, 53(2015) 2510-2516.
DOI: 10.1002/pola.27715
Google Scholar
[41]
S. P. Schiessl, N. Frohlich, M. Held, F. Gannott, M. Schweiger, M. Forster, U. Scherf and J. Zaumseil, Polymer-sorted semiconducting carbon nanotube networks for high-performance ambipolar field-effect transistors. ACS Applied Materials & Interfaces, 7(2015)682-689.
DOI: 10.1021/am506971b
Google Scholar
[42]
K. Iakoubovskii, N. Minami, S. Kazaoui, T. Ueno, Y. Miyata, K. Yanagi, H. Kataura, S. Ohshima, T. Saito, IR-extended photoluminescence mapping of single-wall and double-wall carbon nanotubes, The Journal of Physical Chemistry B, 110(2006)17420-17424.
DOI: 10.1021/jp062653t
Google Scholar
[43]
R.B. Weisman, S.M. Bachilo, Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical Kataura Plot, Nano Letters, 3(2003)1235-1238.
DOI: 10.1021/nl034428i
Google Scholar
[44]
X. Zhang, J. Zhao, M. Tange, W. Xu, W. Xu, K. Zhang, W. Guo, T. Okazaki, Z. Cui, Sorting semiconducting single walled carbon nanotubes by poly(9,9-dioctylfluorene) derivatives and application for ammonia gas sensing, Carbon, 94(2015)903-910.
DOI: 10.1016/j.carbon.2015.07.072
Google Scholar
[45]
A. Draoui, M. Zidour, A. Tounsi, B. Adim, Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT), Journal of Nano Research, 57(2019)117-135.
DOI: 10.4028/www.scientific.net/jnanor.57.117
Google Scholar
[46]
A. A. Bousahla, F. Bourada, S. R. Mahmoud, A. Tounsi, Buckling and dynamic behavior of the simply supported cnt-rc beams using an integral-first shear deformation theory. Computers and Concrete, 25(2020)155-166.
Google Scholar
[47]
F. Bourada, A. A. Bousahla, A. Tounsi, A. B. E. Abbas, T. Abdelouahed, Stability and dynamic analyses of swcnt reinforced concrete beam resting on elastic-foundation. Computers and Concrete, 25(2020).
Google Scholar
[48]
M. Hussain, M. N. Naeem, A. Tounsi, M. Taj, Nonlocal effect on the vibration of armchair and zigzag swcnts with bending rigidity. Advances in nano research, 7(2019) 432-432.
Google Scholar
[49]
M. Medani, A. Benahmed, M. Zidour, H. Heireche, S. R. Mahmoud, Static and dynamic behavior of (fg-cnt) reinforced porous sandwich plate using energy principle. Steel and Composite Structures, 32 (2019) 595-610.
Google Scholar
[50]
M. Hussain, M. N. Naeem, M. Taj, A. Tounsi, Simulating vibration of single-walled carbon nanotube using rayleigh-ritz's method. Advances in nano research (2020).
Google Scholar
[51]
M. S. H. Al-Furjan, H. Safarpour, M. Habibi, M. Safarpour, A. Tounsi, A comprehensive computational approach for nonlinear thermal instability of the electrically fg-gplrc disk based on gdq method. Engineering With Computers, (2020).
DOI: 10.1007/s00366-020-01088-7
Google Scholar
[52]
M. S. H. Al-Furjan, M. Habibi, D. W. Jung, S. Sadeghi, G. Chen, A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel. Engineering With Computers, (2020).
DOI: 10.1007/s00366-020-01130-8
Google Scholar
[53]
S. Alimirzaei, M. Mohammadimehr, A. Tounsi, Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using fem: msgt electro-magneto-elastic bending, buckling and vibration solutions. Structural Engineering & Mechanics, 71(2019) 485-502.
DOI: 10.12989/sem.2016.59.3.431
Google Scholar