[1]
Mavrikakis M, Stoltze P, Nørskov JK. Making gold less noble. Catal Lett. 2000;64(2-4):101-6.
Google Scholar
[2]
Donoeva BG, Ovoshchnikov DS, Golovko VB. Establishing a Au nanoparticle size effect in the oxidation of cyclohexene using gradually changing Au catalysts. ACS Catal. 2013;3(12):2986-91.
DOI: 10.1021/cs400701j
Google Scholar
[3]
Haruta M. Size- and support-dependency in the catalysis of gold. Catal Today. 1997;36(1):153-66.
DOI: 10.1016/s0920-5861(96)00208-8
Google Scholar
[4]
Herzing AA, Kiely CJ, Carley AF, Landon P, Hutchings GJ. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science. 2008;321(5894):1331-5.
DOI: 10.1126/science.1159639
Google Scholar
[5]
Bamwenda GR, Tsubota S, Nakamura T, Haruta M. The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation. Catal Lett. 1997;44(1-2):83-7.
Google Scholar
[6]
Valden M, Lai X, Goodman DW. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science. 1998;281(5383):1647-50.
DOI: 10.1126/science.281.5383.1647
Google Scholar
[7]
Boronat M, Corma A, Illas F, Radilla J, Ródenas T, Sabater MJ. Mechanism of selective alcohol oxidation to aldehydes on gold catalysts: Influence of surface roughness on reactivity. J Catal. 2011;278(1):50-8.
DOI: 10.1016/j.jcat.2010.11.013
Google Scholar
[8]
Hu J, Chen L, Zhu K, Suchopar A, Richards R. Aerobic oxidation of alcohols catalyzed by gold nano-particles confined in the walls of mesoporous silica. Catal Today. 2007;122(3-4):277-83.
DOI: 10.1016/j.cattod.2007.01.012
Google Scholar
[9]
Cox DM, Brickman R, Creegan K, Kaldor A. Gold clusters: Reactions and deuterium uptake. Z Phys D: At, Mol Clusters. 1991;19(4):353-5.
DOI: 10.1007/978-3-642-76178-2_84
Google Scholar
[10]
Chi LF, Rakers S, Hartig M, Gleiche M, Fuchs H, Schmid G. Monolayers of nanosized Au55-clusters: Preparation and characterization. Colloids Surf, A. 2000;171(1-3):241-8.
DOI: 10.1016/s0927-7757(99)00544-0
Google Scholar
[11]
Zhang H, Mautes D, Hartmann U. Negative differential resistance and nonclassical capacitive behaviour in networks of metal clusters. Nanotechnology. 2007;18(6):1-5.
DOI: 10.1088/0957-4484/18/6/065202
Google Scholar
[12]
Schmid G, Pfeil R, Boese R, Bandermann F, Meyer S, Calis GHM, et al. AU55[P(C6H5)3]12CL6 -A gold cluster of an exceptional size. Chem Ber Recl. 1981;114(11):3634-42.
DOI: 10.1002/chin.198208329
Google Scholar
[13]
Haider P, Urakawa A, Schmidt E, Baiker A. Selective blocking of active sites on supported gold catalysts by adsorbed thiols and its effect on the catalytic behavior: A combined experimental and theoretical study. J Mol Catal A: Chem. 2009;305(1-2):161-9.
DOI: 10.1016/j.molcata.2009.02.025
Google Scholar
[14]
Liu Y, Tsunoyama H, Akita T, Tsukuda T. Size effect of silica-supported gold clusters in the microwave-assisted oxidation of benzyl alcohol with H2O2. Chem Lett. 2010;39(3):159-61.
DOI: 10.1246/cl.2010.159
Google Scholar
[15]
Nielsen IS, Taarning E, Egeblad K, Madsen R, Christensen CH. Direct aerobic oxidation of primary alcohols to methyl esters catalyzed by a heterogeneous gold catalyst. Catal Lett. 2007;116(1-2):35-40.
DOI: 10.1007/s10562-007-9086-9
Google Scholar
[16]
Oliveira RL, Kiyohara PK, Rossi LM. Clean preparation of methyl esters in one-step oxidative esterification of primary alcohols catalyzed by supported gold nanoparticles. Green Chem. 2009;11(9):1366-70.
DOI: 10.1039/b902499a
Google Scholar
[17]
Su F-Z, Ni J, Sun H, Cao Y, He H-Y, Fan K-N. Gold supported on nanocrystalline β-Ga2O3 as a versatile bifunctional catalyst for facile oxidative transformation of alcohols, aldehydes, and acetals into esters. Chem Eur J. 2008;14(24):7131-5.
DOI: 10.1002/chem.200800982
Google Scholar
[18]
Ishida T, Nagaoka M, Akita T, Haruta M. Deposition of gold clusters on porous coordination polymers by solid grinding and their catalytic activity in aerobic oxidation of alcohols. Chem- Eur J. 2008;14(28):8456-60.
DOI: 10.1002/chem.200800980
Google Scholar
[19]
Ghadamgahi S, Williamson BE, Golovko VB. Activity of catalysts derived from Au101 immobilized on activated carbon. Catal Lett. 2016;146(6):1027-32.
DOI: 10.1007/s10562-016-1722-9
Google Scholar
[20]
Wen F, Englert U, Gutrath B, Simon U. Crystal structure, electrochemical and optical properties of [Au9(PPh3)8](NO3)3. Eur J Inorg Chem. 2008;2008(1):106-11.
Google Scholar
[21]
Van der Velden JWA, Bour JJ, Bosman WP, Noordik JH. Reactions of cationic gold clusters with Lewis bases. Preparation and x-ray structure investigation of [Au8(PPh3)7](NO3)2.2CH2Cl2 and Au6(PPh3)4[Co(CO)4]2. Inorg Chem. 1983;22(13):1913-8.
DOI: 10.1021/ic00155a018
Google Scholar
[22]
Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Disc Faraday Soc. 1951;11:55-75.
DOI: 10.1039/df9511100055
Google Scholar
[23]
Martin MN, Basham JI, Chando P, Eah S-K. Charged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assembly. Langmuir. 2010;26(10):7410-7.
DOI: 10.1021/la100591h
Google Scholar
[24]
Hutchinson JE, Foster EW, Warner MG, Reed SM, Weare WW. Triphenylphosphine-stabilised gold nanoparticles. In: Shapley JR, editor. Inorganic syntheses. 34 (Willey & Sons); 2004. pp.228-32.
Google Scholar
[25]
Bond GC, Thompson DT. Catalysis by gold. Catal Rev—Sci Eng. 2001;641(3-4):319-88.
Google Scholar
[26]
Horváth A, Beck A, Sárkány A, Stefler G, Varga Z, Geszti O, et al. Silica-supported Au nanoparticles decorated by TiO2: Formation, morphology, and CO oxidation activity. J Phys Chem B. 2006;110(31):15417-25.
DOI: 10.1021/jp060977b
Google Scholar
[27]
Link S, El-Sayed MA. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B. 1999;103(21):4212-7.
DOI: 10.1021/jp984796o
Google Scholar
[28]
Weare WW, Reed SM, Warner MG, Hutchison JE. Improved synthesis of small (dCORE ≈ 1.5 nm) phosphine-stabilized gold nanoparticies J Am Chem Soc. 2000;122(51):12890-1.
DOI: 10.1021/ja002673n
Google Scholar
[29]
Anderson DP, Adnan RH, Alvino JF, Shipper O, Donoeva B, Ruzicka JY, et al. Chemically synthesised atomically precise gold clusters deposited and activated on titania. Part II. PCCP. 2013;15(35):14806-13.
DOI: 10.1039/c3cp52497c
Google Scholar
[30]
Anderson DP, Alvino JF, Gentleman A, Qahtani HA, Thomsen L, Polson MIJ, et al. Chemically-synthesised, atomically-precise gold clusters deposited and activated on titania. PCCP. 2013;15(11):3917-29.
DOI: 10.1039/c3cp44005b
Google Scholar
[31]
Woehrle GH, Hutchison JE. Thiol-functionalized undecagold clusters by ligand exchange: Synthesis, mechanism, and properties. Inorg Chem. 2005;44(18):6149-58.
DOI: 10.1021/ic048686+
Google Scholar
[32]
Zheng N, Stucky GD. A general synthetic strategy for oxide-supported metal nanoparticle catalysts. J Am Chem Soc. 2006;128(44):14278-80.
DOI: 10.1021/ja0659929
Google Scholar
[33]
Haiss W, Thanh NTK, Aveyard J, Fernig DG. Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal Chem. 2007;79(11):4215-21.
DOI: 10.1021/ac0702084
Google Scholar
[34]
Park GG, Yang TH, Yoon YG, Lee WY, Kim CS. Pore size effect of the DMFC catalyst supported on porous materials. Int J Hydrogen Energy. 2003;28(6):645-50.
DOI: 10.1016/s0360-3199(02)00140-4
Google Scholar
[35]
Lim DC, Dietsche R, Ganteför G, Kim YD. Chemical properties of size-selected Au clusters treated under ambient conditions. Chem Phys Lett. 2008;457(4-6):391-5.
DOI: 10.1016/j.cplett.2008.04.059
Google Scholar
[36]
Raghuveer V, Manthiram A. Mesoporous carbons with controlled porosity as an electrocatalytic support for methanol oxidation. J Electrochem Soc. 2005;152(8):A1504-A10. ).
DOI: 10.1149/1.1940767
Google Scholar