[1]
Iaiche, S., Boukaous, C., Alamarguy, D., Djelloul, A., Hamana, D.: Effect of Solution Concentration on ZnO/ZnAl2O4 Nanocomposite Thin Films Formation Deposited by Ultrasonic Spray Pyrolysis on Glass and Si(111) Substrates. J. Nano. Res-Sw. 63, 10-30(2020). https://doi.org/10.4028/www.scientific.net/JNanoR.63.10.
DOI: 10.4028/www.scientific.net/jnanor.63.10
Google Scholar
[2]
Ajibade, P.A., Oluwalana, A.E.: Structural, Optical, Photocatalytic and Electrochemical Studies of PbS Nanoparticles. J. Nano. Res-Sw. 61, 18-31(2020). https://doi.org/10.4028/www.scientific.net/JNanoR.61.18.
DOI: 10.4028/www.scientific.net/jnanor.61.18
Google Scholar
[3]
Usman, A., Karamat, S., Sattar, A., Ashfaq, A., Rafique, M. Dawes, J.: Spectroscopic and Structural Dynamics of MoS2 Thin Films. J. Nano. Res-Sw. 58, 74-79(2019). https://doi.org/10.4028/www.scientific.net/JNanoR.58.74.
DOI: 10.4028/www.scientific.net/jnanor.58.74
Google Scholar
[4]
Chai, J.Y., Wong, B.T.: Study of Light Scattering by TiO2, Ag, and SiO2 Nanofluids with Particle Diameters of 20-60 nm. J. Nano. Res-Sw. 60, 1-20(2019). https://doi.org/10.4028/www.scientific.net/JNanoR.60.1.
DOI: 10.4028/www.scientific.net/jnanor.60.1
Google Scholar
[5]
Hefni, Y.K.: Hydrophobic Zinc Oxide Nanocomposites for Consolidation and Protection of Quartzite Sculptures: A Case Study. J. Nano. Res-Sw. 63, 64-75(2020). https://doi.org/10.4028/www.scientific.net/JNanoR.63.64.
DOI: 10.4028/www.scientific.net/jnanor.63.64
Google Scholar
[6]
Madhusudanan, S., Amirtham, L.R., Nallusamy, S.: Symbiotic Outcomes of Potency and Microstructure on Nano Composite with Microsilica and Nanosilica Additives. J. Nano. Res-Sw. 57, 105-116(2019). https://doi.org/10.4028/www.scientific.net/JNanoR.57.105.
DOI: 10.4028/www.scientific.net/jnanor.57.105
Google Scholar
[7]
Xu, G., Shen, X.: Fabrication of SiO2 nanoparticles incorporated coating onto titanium substrates by the micro arc oxidation to improve the wear resistance. Surf. Coat. Tech. 364, 180-186(2019). https://doi.org/10.1016/j.surfcoat.2019.01.069.
DOI: 10.1016/j.surfcoat.2019.01.069
Google Scholar
[8]
He, X., Tian, F., Bai, X., Yuan, C.: Role of trapped air and lubricant in the interactions between fouling and SiO2 nanoparticle surfaces. Colloid Surface B. 184(2019). https://doi.org/10.1016/j.colsurfb.2019.110502.
DOI: 10.1016/j.colsurfb.2019.110502
Google Scholar
[9]
Chen, X., Wen, S.F., Feng, T., Yuan, X.: High solids organic-inorganic hybrid coatings based on silicone-epoxy-silica coating with improved anticorrosion performance for AA2024 protection. Prog. Org. Coat. 139. https://doi.org/10.1016/j.porgcoat.2019.105374.
DOI: 10.1016/j.porgcoat.2019.105374
Google Scholar
[10]
Gao, X., Hu, M., Fu, Y., Weng, L., Liu, W., Sun, J.: MoS2-Au/Au multilayer lubrication film with better resistance to space environment. J. Alloy. Compd. 815(2020). https://doi.org/10.1016/j.jallcom.2019.152483.
DOI: 10.1016/j.jallcom.2019.152483
Google Scholar
[11]
Singh, H., Mutyala, K.C., Doll, G.L.: Rolling Contact Performance of a Ti-Containing MoS2 Coating Operating Under Ambient, Vacuum, and Oil-Lubricated Conditions. Coatings. 9(2019). https://doi.org/10.3390/coatings9110752.
DOI: 10.3390/coatings9110752
Google Scholar
[12]
Ren, S., Shang, K., Cui, M., Wang, L., Pu, J., Yi, P.: Structural design of MoS2-based coatings toward high humidity and wide temperature. J. Mater. Sci. 54, 11889-11902(2019). https://doi.org/10.1007/s10853-019-03754-8.
DOI: 10.1007/s10853-019-03754-8
Google Scholar
[13]
Zhang, Z., Liu, W., Xue, Q.: Friction and wear behaviors of the complexes of rare earth hexadecylate as grease additive. Wear. 215, 40-45(1998). https://doi.org/10.1016/S0043-1648(97)00284-6.
DOI: 10.1016/s0043-1648(97)00284-6
Google Scholar
[14]
Rawat, S.S., Harsha, A.P., Deepak, A.P.: Tribological performance of paraffin grease with silica nanoparticles as an additive. Appl. Nanosci. 9, 305-315(2019). https://doi.org/10.1007/s13204-018-0911-9.
DOI: 10.1007/s13204-018-0911-9
Google Scholar
[15]
Zhao, F., Wang, P., Yang, J., Zhang, Z.: Study on tribological properties of nano-SiO2 lubricant additives and its anti-wear and friction reduction mechanism. Petroleum Refining and Chemical Industry. 41, 74-79(2010).
Google Scholar
[16]
Sia, S.Y., Bassyony, E.Z., Sarhan, A.A.D.: Development of SiO2 nanolubrication system to be used in sliding bearings. Int. J. Adv. Manuf. Tech. 71, 1277-1284(2014). https://doi.org/10.1007/s00170-013-5566-9.
DOI: 10.1007/s00170-013-5566-9
Google Scholar
[17]
Ge, X., Xia, Y., Cao, Z.: Tribological properties and insulation effect of nanometer TiO2 and nanometer SiO2 as additives in grease. Tribol. Int. 92, 454-461(2015). https://doi.org/10.1016/j.triboint.2015.07.031.
DOI: 10.1016/j.triboint.2015.07.031
Google Scholar
[18]
Peng, D., Chen, C., Kang, Y., Chang, Y. Chang, S.: Size effects of SiO2 nanoparticles as oil additives on tribology of lubricant. Ind. Lubr. Tribol. 62, 111-120(2010). https://doi.org/10.1108/00368791011025656.
DOI: 10.1108/00368791011025656
Google Scholar
[19]
Tannous, J., Dassenoy, F., Bruhács, A., Tremel, W.: Synthesis and Tribological Performance of Novel MoxW1−xS2 (0≤x≤1) Inorganic Fullerenes. Tribol. Lett. 37, 83(2009). https://doi.org/10.1007/s11249-009-9493-8.
DOI: 10.1007/s11249-009-9493-8
Google Scholar
[20]
Wan, Q., Jin, Y., Sun, P., Ding, Y.: Rheological and tribological behaviour of lubricating oils containing platelet MoS2 nanoparticles. J. Nanopart. Res. 16(2014). https://doi.org/10.1007/s11051-014-2386-2.
DOI: 10.1007/s11051-014-2386-2
Google Scholar
[21]
Praveena, M., Jayaram, V., Biswas, S.K.: Friction between a Steel Ball and a Steel Flat Lubricated by MoS2 Particles Suspended in Hexadecane at 150 degrees C. Ind. Eng. Chem. Res. 51, 12321-12328(2012). https://doi.org/10.1021/ie3011337.
DOI: 10.1021/ie3011337
Google Scholar
[22]
Rabaso, P., Ville, F., Dassenoy, F., Diaby, M., Afanasiev, P., Cavoret, J., Vacher, B., Le Mogne, T.: Boundary lubrication: Influence of the size and structure of inorganic fullerene-like MoS2 nanoparticles on friction and wear reduction. Wear. 320, 161-178(2014). https://doi.org/10.1016/j.wear.2014.09.001.
DOI: 10.1016/j.wear.2014.09.001
Google Scholar
[23]
Zakani, B., Grecov, D.: Yield Stress Analysis of a Fumed Silica Lubricating Grease. Tribol. T. 61, 1131-1140(2018). https://doi.org/10.1080/10402004.2018.1499987.
DOI: 10.1080/10402004.2018.1499987
Google Scholar
[24]
Yan, C., Zeng, Q., Hao, Y., Xu, Y., Zhou, M.: Friction-Induced Hardening Behaviors and Tribological Properties of 60NiTi Alloy Lubricated by Lithium Grease Containing Nano-BN and MoS2. Tribol. T. (2019). https://doi.org/10.1080/10402004.2019.1619889.
DOI: 10.1080/10402004.2019.1619889
Google Scholar
[25]
Xie, H., Jiang, B., He, J., Xia, X., Pan, F.: Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts. Tribol. Int. 93, 63-70(2016). https://doi.org/10.1016/j.triboint.2015.08.009.
DOI: 10.1016/j.triboint.2015.08.009
Google Scholar
[26]
Wu, L., Zhao F., Yang, B., Zhang, Z.: Study on Tribological Properties of Lithium-Based Grease Containing Ultrafine SiO2/MoS2 Powders. Bearing. 6, 27-32+36(2020). https://doi.org/10.19533/j.issn1000-3762.2020.06.007.
Google Scholar
[27]
Xie, H., Jiang, B., Liu, B., Wang, Q., Xu, J., Pan, F.: An Investigation on the Tribological Performances of the SiO2/MoS2 Hybrid Nanofluids for Magnesium Alloy-Steel Contacts. Nanoscale Res. Lett. 11(1), 329(2016). https://doi.org/10.1186/s11671-016-1546-y.
DOI: 10.1186/s11671-016-1546-y
Google Scholar
[28]
Ren, R., Zhou, X.: Parameter estimation with stepwise type-I interval censored data. Journal of Nanjing Normal University (Natural Science Edition). 34, 7-12(2011).
Google Scholar
[29]
Zhou, Y., Bosman, R., Lugt, P.M.: On the shear stability of dry and water-contaminated calcium sulfonate complex lubricating greases. Tribol. T. 62(4), 626-634(2019). https://doi.org/10.1080/10402004.2019.1588445.
DOI: 10.1080/10402004.2019.1588445
Google Scholar
[30]
Lugt, P.M.: A Review on Grease Lubrication in Rolling Bearings. Tribol. T. 52, 470-480(2009). https://doi.org/10.1080/10402000802687940.
DOI: 10.1080/10402000802687940
Google Scholar
[31]
Wu, L., Yang, B., Zhao, F., Zhang, Z. 2021: Tribological Properties of Complex Calcium Sulfonate Grease with Ultrafine SiO2/MoS2 Powders. J. Nano. Res-Sw. 66, 35–44(2021). https://doi.org/10.4028/www.scientific.net/jnanor.66.35.
DOI: 10.4028/www.scientific.net/jnanor.66.35
Google Scholar