Study on the Tribological Mechanism of Ultrafine SiO2/MoS2 Powders in Complex Calcium Sulfonate Grease

Article Preview

Abstract:

The purpose of this work was to study and further clarify the anti-wear and anti-friction mechanism of ultrafine SiO2/MoS2 powders in the complex calcium sulfonate grease. In this paper, 15nm nanoSiO2, 1μm MoS2 and commercial NLGI Grade No.2 complex calcium sulfonate grease were used as the research objects, SEM, EDS and XPS were used to study the morphology, composition and film chemical constitution of the long friction wear spots of grease containing single nanoSiO2 powder, ultrafine MoS2 powder and the two compound powders, which formed in the process of four ball long friction. The results show that nanoSiO the grease plays a role in filling the undercut, ball bearings and polishing and forming high hardness Ca3Fe2(SiO4)3 and part of Fe2O3 anti-wear films in the process of long friction. The ultrafine MoS2 powder has a self-repairing effect to fill the grooves,forming the MoS2, MoO3 anti-friction films and Fe2(SO4)3 anti-wear film. The two powders in the composite grease have a synergistic effect, acting on the friction pair together, and simultaneously forming self-repairing anti-friction and anti-wear films, thereby further improving the tribological performance of the base grease.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-87

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Iaiche, S., Boukaous, C., Alamarguy, D., Djelloul, A., Hamana, D.: Effect of Solution Concentration on ZnO/ZnAl2O4 Nanocomposite Thin Films Formation Deposited by Ultrasonic Spray Pyrolysis on Glass and Si(111) Substrates. J. Nano. Res-Sw. 63, 10-30(2020). https://doi.org/10.4028/www.scientific.net/JNanoR.63.10.

DOI: 10.4028/www.scientific.net/jnanor.63.10

Google Scholar

[2] Ajibade, P.A., Oluwalana, A.E.: Structural, Optical, Photocatalytic and Electrochemical Studies of PbS Nanoparticles. J. Nano. Res-Sw. 61, 18-31(2020). https://doi.org/10.4028/www.scientific.net/JNanoR.61.18.

DOI: 10.4028/www.scientific.net/jnanor.61.18

Google Scholar

[3] Usman, A., Karamat, S., Sattar, A., Ashfaq, A., Rafique, M. Dawes, J.: Spectroscopic and Structural Dynamics of MoS2 Thin Films. J. Nano. Res-Sw. 58, 74-79(2019). https://doi.org/10.4028/www.scientific.net/JNanoR.58.74.

DOI: 10.4028/www.scientific.net/jnanor.58.74

Google Scholar

[4] Chai, J.Y., Wong, B.T.: Study of Light Scattering by TiO2, Ag, and SiO2 Nanofluids with Particle Diameters of 20-60 nm. J. Nano. Res-Sw. 60, 1-20(2019). https://doi.org/10.4028/www.scientific.net/JNanoR.60.1.

DOI: 10.4028/www.scientific.net/jnanor.60.1

Google Scholar

[5] Hefni, Y.K.: Hydrophobic Zinc Oxide Nanocomposites for Consolidation and Protection of Quartzite Sculptures: A Case Study. J. Nano. Res-Sw. 63, 64-75(2020). https://doi.org/10.4028/www.scientific.net/JNanoR.63.64.

DOI: 10.4028/www.scientific.net/jnanor.63.64

Google Scholar

[6] Madhusudanan, S., Amirtham, L.R., Nallusamy, S.: Symbiotic Outcomes of Potency and Microstructure on Nano Composite with Microsilica and Nanosilica Additives. J. Nano. Res-Sw. 57, 105-116(2019). https://doi.org/10.4028/www.scientific.net/JNanoR.57.105.

DOI: 10.4028/www.scientific.net/jnanor.57.105

Google Scholar

[7] Xu, G., Shen, X.: Fabrication of SiO2 nanoparticles incorporated coating onto titanium substrates by the micro arc oxidation to improve the wear resistance. Surf. Coat. Tech. 364, 180-186(2019). https://doi.org/10.1016/j.surfcoat.2019.01.069.

DOI: 10.1016/j.surfcoat.2019.01.069

Google Scholar

[8] He, X., Tian, F., Bai, X., Yuan, C.: Role of trapped air and lubricant in the interactions between fouling and SiO2 nanoparticle surfaces. Colloid Surface B. 184(2019). https://doi.org/10.1016/j.colsurfb.2019.110502.

DOI: 10.1016/j.colsurfb.2019.110502

Google Scholar

[9] Chen, X., Wen, S.F., Feng, T., Yuan, X.: High solids organic-inorganic hybrid coatings based on silicone-epoxy-silica coating with improved anticorrosion performance for AA2024 protection. Prog. Org. Coat. 139. https://doi.org/10.1016/j.porgcoat.2019.105374.

DOI: 10.1016/j.porgcoat.2019.105374

Google Scholar

[10] Gao, X., Hu, M., Fu, Y., Weng, L., Liu, W., Sun, J.: MoS2-Au/Au multilayer lubrication film with better resistance to space environment. J. Alloy. Compd. 815(2020). https://doi.org/10.1016/j.jallcom.2019.152483.

DOI: 10.1016/j.jallcom.2019.152483

Google Scholar

[11] Singh, H., Mutyala, K.C., Doll, G.L.: Rolling Contact Performance of a Ti-Containing MoS2 Coating Operating Under Ambient, Vacuum, and Oil-Lubricated Conditions. Coatings. 9(2019). https://doi.org/10.3390/coatings9110752.

DOI: 10.3390/coatings9110752

Google Scholar

[12] Ren, S., Shang, K., Cui, M., Wang, L., Pu, J., Yi, P.: Structural design of MoS2-based coatings toward high humidity and wide temperature. J. Mater. Sci. 54, 11889-11902(2019). https://doi.org/10.1007/s10853-019-03754-8.

DOI: 10.1007/s10853-019-03754-8

Google Scholar

[13] Zhang, Z., Liu, W., Xue, Q.: Friction and wear behaviors of the complexes of rare earth hexadecylate as grease additive. Wear. 215, 40-45(1998). https://doi.org/10.1016/S0043-1648(97)00284-6.

DOI: 10.1016/s0043-1648(97)00284-6

Google Scholar

[14] Rawat, S.S., Harsha, A.P., Deepak, A.P.: Tribological performance of paraffin grease with silica nanoparticles as an additive. Appl. Nanosci. 9, 305-315(2019). https://doi.org/10.1007/s13204-018-0911-9.

DOI: 10.1007/s13204-018-0911-9

Google Scholar

[15] Zhao, F., Wang, P., Yang, J., Zhang, Z.: Study on tribological properties of nano-SiO2 lubricant additives and its anti-wear and friction reduction mechanism. Petroleum Refining and Chemical Industry. 41, 74-79(2010).

Google Scholar

[16] Sia, S.Y., Bassyony, E.Z., Sarhan, A.A.D.: Development of SiO2 nanolubrication system to be used in sliding bearings. Int. J. Adv. Manuf. Tech. 71, 1277-1284(2014). https://doi.org/10.1007/s00170-013-5566-9.

DOI: 10.1007/s00170-013-5566-9

Google Scholar

[17] Ge, X., Xia, Y., Cao, Z.: Tribological properties and insulation effect of nanometer TiO2 and nanometer SiO2 as additives in grease. Tribol. Int. 92, 454-461(2015). https://doi.org/10.1016/j.triboint.2015.07.031.

DOI: 10.1016/j.triboint.2015.07.031

Google Scholar

[18] Peng, D., Chen, C., Kang, Y., Chang, Y. Chang, S.: Size effects of SiO2 nanoparticles as oil additives on tribology of lubricant. Ind. Lubr. Tribol. 62, 111-120(2010). https://doi.org/10.1108/00368791011025656.

DOI: 10.1108/00368791011025656

Google Scholar

[19] Tannous, J., Dassenoy, F., Bruhács, A., Tremel, W.: Synthesis and Tribological Performance of Novel MoxW1−xS2 (0≤x≤1) Inorganic Fullerenes. Tribol. Lett. 37, 83(2009). https://doi.org/10.1007/s11249-009-9493-8.

DOI: 10.1007/s11249-009-9493-8

Google Scholar

[20] Wan, Q., Jin, Y., Sun, P., Ding, Y.: Rheological and tribological behaviour of lubricating oils containing platelet MoS2 nanoparticles. J. Nanopart. Res. 16(2014). https://doi.org/10.1007/s11051-014-2386-2.

DOI: 10.1007/s11051-014-2386-2

Google Scholar

[21] Praveena, M., Jayaram, V., Biswas, S.K.: Friction between a Steel Ball and a Steel Flat Lubricated by MoS2 Particles Suspended in Hexadecane at 150 degrees C. Ind. Eng. Chem. Res. 51, 12321-12328(2012). https://doi.org/10.1021/ie3011337.

DOI: 10.1021/ie3011337

Google Scholar

[22] Rabaso, P., Ville, F., Dassenoy, F., Diaby, M., Afanasiev, P., Cavoret, J., Vacher, B., Le Mogne, T.: Boundary lubrication: Influence of the size and structure of inorganic fullerene-like MoS2 nanoparticles on friction and wear reduction. Wear. 320, 161-178(2014). https://doi.org/10.1016/j.wear.2014.09.001.

DOI: 10.1016/j.wear.2014.09.001

Google Scholar

[23] Zakani, B., Grecov, D.: Yield Stress Analysis of a Fumed Silica Lubricating Grease. Tribol. T. 61, 1131-1140(2018). https://doi.org/10.1080/10402004.2018.1499987.

DOI: 10.1080/10402004.2018.1499987

Google Scholar

[24] Yan, C., Zeng, Q., Hao, Y., Xu, Y., Zhou, M.: Friction-Induced Hardening Behaviors and Tribological Properties of 60NiTi Alloy Lubricated by Lithium Grease Containing Nano-BN and MoS2. Tribol. T. (2019). https://doi.org/10.1080/10402004.2019.1619889.

DOI: 10.1080/10402004.2019.1619889

Google Scholar

[25] Xie, H., Jiang, B., He, J., Xia, X., Pan, F.: Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts. Tribol. Int. 93, 63-70(2016). https://doi.org/10.1016/j.triboint.2015.08.009.

DOI: 10.1016/j.triboint.2015.08.009

Google Scholar

[26] Wu, L., Zhao F., Yang, B., Zhang, Z.: Study on Tribological Properties of Lithium-Based Grease Containing Ultrafine SiO2/MoS2 Powders. Bearing. 6, 27-32+36(2020). https://doi.org/10.19533/j.issn1000-3762.2020.06.007.

Google Scholar

[27] Xie, H., Jiang, B., Liu, B., Wang, Q., Xu, J., Pan, F.: An Investigation on the Tribological Performances of the SiO2/MoS2 Hybrid Nanofluids for Magnesium Alloy-Steel Contacts. Nanoscale Res. Lett. 11(1), 329(2016). https://doi.org/10.1186/s11671-016-1546-y.

DOI: 10.1186/s11671-016-1546-y

Google Scholar

[28] Ren, R., Zhou, X.: Parameter estimation with stepwise type-I interval censored data. Journal of Nanjing Normal University (Natural Science Edition). 34, 7-12(2011).

Google Scholar

[29] Zhou, Y., Bosman, R., Lugt, P.M.: On the shear stability of dry and water-contaminated calcium sulfonate complex lubricating greases. Tribol. T. 62(4), 626-634(2019). https://doi.org/10.1080/10402004.2019.1588445.

DOI: 10.1080/10402004.2019.1588445

Google Scholar

[30] Lugt, P.M.: A Review on Grease Lubrication in Rolling Bearings. Tribol. T. 52, 470-480(2009). https://doi.org/10.1080/10402000802687940.

DOI: 10.1080/10402000802687940

Google Scholar

[31] Wu, L., Yang, B., Zhao, F., Zhang, Z. 2021: Tribological Properties of Complex Calcium Sulfonate Grease with Ultrafine SiO2/MoS2 Powders. J. Nano. Res-Sw. 66, 35–44(2021). https://doi.org/10.4028/www.scientific.net/jnanor.66.35.

DOI: 10.4028/www.scientific.net/jnanor.66.35

Google Scholar