Nonlinear Behavior of Single Walled Carbon Nanotube Reinforced Aluminium Alloy Beam

Article Preview

Abstract:

This paper aims to analyze the nonlinear vibration of clamped-clamped buckled beams made of Aluminium alloy (Al-alloy) reinforced with uniformly dispersed Single Walled Carbon Nanotube (SWNT). The mean field homogenization technique is used to predict the effective material properties of the beams. The equation of motion governing the nonlinear behavior is solved using an exact method. The effects of various parameters including axial load, vibration amplitude, SWNT volume fraction, SWNT aspect ratio and beam slenderness ratio on the nonlinear frequency and on the phase trajectory plots for pre- and post-buckling states are studied.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-103

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.J. Loh, J.P. Lynch, N.A. Kotov, Inductively coupled nanocomposite wireless strain and pH sensors, Smart Struct. Syst. 4(2008), 531-548.

DOI: 10.12989/sss.2008.4.5.531

Google Scholar

[2] S.R. Bakshi, D. Lahiri, A. Agarwal, Carbon nanotube reinforced metal matrixcomposites - a review, Int. Mater. Rev. 55(2010), 41-64.

Google Scholar

[3] I.W. Nam, H. Souri, H.K. Lee, Percolation threshold and piezoresistive response of multi-wall carbon nanotube/cement composites, Smart Struct. Syst. 18(2016), 217-231.

DOI: 10.12989/sss.2016.18.2.217

Google Scholar

[4] A. Semmah, H. Heireche, A.A. Bousahla, A. Tounsi, Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT, Adv. Nano. Res. 7(2019), 89-98.

Google Scholar

[5] R. Paul, P. Kumbhakar, A.K. Mitra, A facile chemical synthesis of a novel photo catalyst: SWCNT/titania nanocomposite, Adv. Nano Res. 1(2013), 71-82.

DOI: 10.12989/anr.2013.1.2.071

Google Scholar

[6] T. Murmu, S.C. Pradhan, Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory, Comput. Mater. Sci. 46(2009), 854-859.

DOI: 10.1016/j.commatsci.2009.04.019

Google Scholar

[7] A. Rouabhia, A. Chikh, A.A. Bousahla, F. Bourada, H. Heireche, A. Tounsi, K.H. Benrahou, A. Tounsi, M.M. Al-Zahrani, Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory, Steel Compos. Struct. 37(2020), 695-709.

DOI: 10.1134/s1029959922010064

Google Scholar

[8] A. Selmi, A. Bisharat, Free vibration of functionally graded SWNT reinforced aluminum alloy beam, J. Vibroeng. 20(2018), 2151-2164.

DOI: 10.21595/jve.2018.19445

Google Scholar

[9] A. Selmi, Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy, Adv. Nano Res. 7(2019), 365-377.

Google Scholar

[10] M.S.H. Al-Furjan, A. hatami, M. Habibi, L. Shan, A. Tounsi, On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method, Compos. Struct. 257(2021), 113150.

DOI: 10.1016/j.compstruct.2020.113150

Google Scholar

[11] Q. Wang, V. Varadan, Vibration of carbon nanotubes studied using nonlocal continuum mechanics, Smart Mater. Struct. 15(2006), 659.

DOI: 10.1088/0964-1726/15/2/050

Google Scholar

[12] D. Karlicić, P. Kozić, R. Pavlović, Flexural vibration and buckling analysis of single-walled carbon nanotubes using different gradient elasticity theories based on Reddy and Huu-Tai formulations, J. Theor. App. Mech-Pol. 53(2015), 217-233.

DOI: 10.15632/jtam-pl.53.1.217

Google Scholar

[13] M. Medani, A. Benahmed, M. Zidour, H. Heireche, A. Tounsi, A.A. Bousahla, S.R. Mahmoud, Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle, Steel Compos. Struct. 32(2019), 595-610.

Google Scholar

[14] A. Draoui, M. Zidour, A. Tounsi, B. Adim, Static and Dynamic Behavior of Nanotubes-Reinforced Sandwich Plates Using (FSDT), J. Nano Res. 57(2019), 117-135.

DOI: 10.4028/www.scientific.net/jnanor.57.117

Google Scholar

[15] N. Bendenia, M. Zidour, A.A. Bousahla, F. Bourada, A. Tounsi, K.H. Benrahou, A. Tounsi, Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation, Comput. Concr. 26(2020), 213-226.

DOI: 10.12989/scs.2016.22.1.091

Google Scholar

[16] M.S.H. Al-Furjan, M. Habibi, D.W. Jung, S. Sadeghi, H. Safarpour, A. Tounsi, G. Chen, A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel, Eng. Comput. (2020).

DOI: 10.1007/s00366-020-01130-8

Google Scholar

[17] A.A. Bousahla, F. Bourada, S.R. Mahmoud, A. Tounsi, A. Algarni, E.AA., Bedia, A. Tounsi, Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory, Comput. Concr. 25(2020), 155-166.

Google Scholar

[18] F. Khosravi, S.A. Hosseini, A. Tounsi, Forced Axial Vibration of a Single-Walled Carbon Nanotube Embedded in Elastic Medium under Various Moving Forces, J. Nano Res. 63(2020), 112-133.

DOI: 10.4028/www.scientific.net/jnanor.63.112

Google Scholar

[19] M. Bellal, H. Hebali, H., Heireche, A.A. Bousahla, A. Tounsi, F., Bourada, S.R. Mahmoud, E.A.A. Bedia, A. Tounsi, Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model, Steel Compos. Struct. 34(2020), 643-655.

Google Scholar

[20] M. Simsek, Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory, Physica E, 43(2010), 182-191.

DOI: 10.1016/j.physe.2010.07.003

Google Scholar

[21] M.H.H. Yas, N. Samadi, Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation, Int. J. Press. Vessel. Pip. 98(2012),119-128.

DOI: 10.1016/j.ijpvp.2012.07.012

Google Scholar

[22] M. Shaban, A. Alibeigloo, Three dimensional vibration and bending analysis of carbon nanotubes embedded in elastic medium based on theory of elasticity, Lat. Am. j. solids struct. 11(2014), 2122-2140.

DOI: 10.1590/s1679-78252014001200002

Google Scholar

[23] S. Narendar, S. Gopalakrishnan, Terahertz wave characteristics of a single-walled carbon nanotube containing a fluid flow using the nonlocal Timoshenko beam model, Physica E, 42(2010), 1706-1712.

DOI: 10.1016/j.physe.2010.01.028

Google Scholar

[24] P. Soltani, M.M. Taherian, A. Farshidianfar, Vibration and instability of a viscous-fluid-conveying single-walled carbon nanotube embedded in a visco-elastic medium, J. Phys. D Appl. Phys. 43(2010), 425401.

DOI: 10.1088/0022-3727/43/42/425401

Google Scholar

[25] A.G. Shenas, S. Ziaee, P. Malekzadeh, A unified higher-order beam theory for free vibration and buckling of FGCNT-reinforced microbeams embedded in elastic medium based on unifying stress–strain gradient framework, Iran J. Sci. Technol. Trans. Mech. Eng. 43(2018), 469-492.

DOI: 10.1007/s40997-018-0171-z

Google Scholar

[26] F. Bourada, A.A. Bousahla, A. Tounsi, E.A.A. Bedia, S.R. Mahmoud, K.H. Benrahou, A. Tounsi, Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation, Comput. Concr. 25(2020), 485-495.

Google Scholar

[27] M.S.H. Al-Furjan, H. Safarpour, M. Habibi, M. Safarpour, A. Tounsi, A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method. Eng. Comput. (2020).

DOI: 10.1007/s00366-020-01088-7

Google Scholar

[28] A.A.A. Ahmadi, P. Valipour, S.E. Ghasemi, Investigation on vibration of single-walled carbon nanotubes by variational iteration method, Appl. Nanosci. 6 (2016), 243-249.

DOI: 10.1007/s13204-015-0416-8

Google Scholar

[29] K. Huang, S. Zhang, J. Li, Z. Li, Nonlocal nonlinear model of Bernoulli-Euler nanobeam with small initial curvature and its application to single-walled carbon nanotubes, Microsyst. Technol., 25(2019), 4303-4310.

DOI: 10.1007/s00542-019-04365-8

Google Scholar

[30] A. Besseghier, H. Heireche, A.A. Bousahla, A. Tounsi, A. Benzair, Nonlinear Vibration Properties of a Zigzag Single-Walled Carbon Nanotube Embedded in a Polymer Matrix, Adv. Nano. Res., Int. J. 3(2015), 29-37.

DOI: 10.12989/anr.2015.3.1.029

Google Scholar

[31] L. Li, Y. Hu, Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded materiall, Int. J. Eng. Sci. 107(2016), 77-97.

DOI: 10.1016/j.ijengsci.2016.07.011

Google Scholar

[32] S. Rouhi, R. Ansari, M. Ahmadi, Finite element investigation into the thermal conductivity of carbon nanotube/aluminum nanocomposites, Mod. Phys. Lett. B, 31(2017), 1750053.

DOI: 10.1142/s0217984917500531

Google Scholar

[33] S. Belmahi, M. Zidour, M. Meradjah, Small-scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory, Adv. Aircr. Spacecr. Sci. 6(2019), 001-018.

Google Scholar

[34] H. Gao, B. Ji, I. L. Jager, E. Arzt, P. Fratzl, Materials become insensitive to flaws at nanoscale: Lessons from nature, Proc. Natl. Acad. Sci. USA, 100(2003), 5597-5600.

DOI: 10.1073/pnas.0631609100

Google Scholar

[35] J.H. Bak, Y.D. Kim, S.S. Hong, B.Y. Lee, S.R. Lee, J.H. Jang, M. Kim, K. Char, S. Hong, Y.D. Park, High-frequency micromechanical resonators from aluminium–carbon nanotube nanolaminates, Nature Mater. 7(2008), 459-463.

DOI: 10.1038/nmat2181

Google Scholar

[36] T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials withmisfitting inclusions, Acta Metall. 21(1973), 571-574.

DOI: 10.1016/0001-6160(73)90064-3

Google Scholar

[37] A. Selmi, C. Friebel, I. Doghri, H. Hassis, Prediction of the elastic properties of single walled carbon nanotube reinforced polymers: A comparative study of several micromechanical models, Compos. Sci. Technol. 67(2007), 2071-2084.

DOI: 10.1016/j.compscitech.2006.11.016

Google Scholar

[38] M. Aydogdu, V. Taskin, Free vibration analysis of functionally graded beams with simply-supported edges, Mater. Des. 28(2007), 1651-1656.

DOI: 10.1016/j.matdes.2006.02.007

Google Scholar

[39] L.L. Ke, J. Yang, S. Kitipornchai, An analytical study on the nonlinear vibration of functionally graded beams, Meccanica, 45(2010), 743-752.

DOI: 10.1007/s11012-009-9276-1

Google Scholar

[40] W. Lestari, S. Hanagud, Nonlinear vibration ofbuckled beams: some exact solutions, Int. J. Solids Struct. 38(2001), 4741-4757.

DOI: 10.1016/s0020-7683(00)00300-0

Google Scholar

[41] M.D. Byrd, P.F. Friedman, Handbookofellipticintegralsforengineersandphysicists, Springer, Berlin, (1971).

Google Scholar

[42] H.B. Zainuddin, M.B. Ali, Study of wheel rim impact test using finite element analysis, Proceedings of Mechanical Engineering Research Day, (2016), 141.

Google Scholar

[43] A. Eatemadi, H. Daraee, H. Karimkhanloo, M. Kouhi, N. Zarghami, A. Akbarzadeh, M. Abasi, Y. Hanifehpour, S.W. Joo, Carbon nanotubes: properties, synthesis, purification, and medical applications, Nanoscale Res. Lett. 9(2014), 393.

DOI: 10.1186/1556-276x-9-393

Google Scholar