[1]
K.J. Loh, J.P. Lynch, N.A. Kotov, Inductively coupled nanocomposite wireless strain and pH sensors, Smart Struct. Syst. 4(2008), 531-548.
DOI: 10.12989/sss.2008.4.5.531
Google Scholar
[2]
S.R. Bakshi, D. Lahiri, A. Agarwal, Carbon nanotube reinforced metal matrixcomposites - a review, Int. Mater. Rev. 55(2010), 41-64.
Google Scholar
[3]
I.W. Nam, H. Souri, H.K. Lee, Percolation threshold and piezoresistive response of multi-wall carbon nanotube/cement composites, Smart Struct. Syst. 18(2016), 217-231.
DOI: 10.12989/sss.2016.18.2.217
Google Scholar
[4]
A. Semmah, H. Heireche, A.A. Bousahla, A. Tounsi, Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT, Adv. Nano. Res. 7(2019), 89-98.
Google Scholar
[5]
R. Paul, P. Kumbhakar, A.K. Mitra, A facile chemical synthesis of a novel photo catalyst: SWCNT/titania nanocomposite, Adv. Nano Res. 1(2013), 71-82.
DOI: 10.12989/anr.2013.1.2.071
Google Scholar
[6]
T. Murmu, S.C. Pradhan, Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory, Comput. Mater. Sci. 46(2009), 854-859.
DOI: 10.1016/j.commatsci.2009.04.019
Google Scholar
[7]
A. Rouabhia, A. Chikh, A.A. Bousahla, F. Bourada, H. Heireche, A. Tounsi, K.H. Benrahou, A. Tounsi, M.M. Al-Zahrani, Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory, Steel Compos. Struct. 37(2020), 695-709.
DOI: 10.1134/s1029959922010064
Google Scholar
[8]
A. Selmi, A. Bisharat, Free vibration of functionally graded SWNT reinforced aluminum alloy beam, J. Vibroeng. 20(2018), 2151-2164.
DOI: 10.21595/jve.2018.19445
Google Scholar
[9]
A. Selmi, Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy, Adv. Nano Res. 7(2019), 365-377.
Google Scholar
[10]
M.S.H. Al-Furjan, A. hatami, M. Habibi, L. Shan, A. Tounsi, On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method, Compos. Struct. 257(2021), 113150.
DOI: 10.1016/j.compstruct.2020.113150
Google Scholar
[11]
Q. Wang, V. Varadan, Vibration of carbon nanotubes studied using nonlocal continuum mechanics, Smart Mater. Struct. 15(2006), 659.
DOI: 10.1088/0964-1726/15/2/050
Google Scholar
[12]
D. Karlicić, P. Kozić, R. Pavlović, Flexural vibration and buckling analysis of single-walled carbon nanotubes using different gradient elasticity theories based on Reddy and Huu-Tai formulations, J. Theor. App. Mech-Pol. 53(2015), 217-233.
DOI: 10.15632/jtam-pl.53.1.217
Google Scholar
[13]
M. Medani, A. Benahmed, M. Zidour, H. Heireche, A. Tounsi, A.A. Bousahla, S.R. Mahmoud, Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle, Steel Compos. Struct. 32(2019), 595-610.
Google Scholar
[14]
A. Draoui, M. Zidour, A. Tounsi, B. Adim, Static and Dynamic Behavior of Nanotubes-Reinforced Sandwich Plates Using (FSDT), J. Nano Res. 57(2019), 117-135.
DOI: 10.4028/www.scientific.net/jnanor.57.117
Google Scholar
[15]
N. Bendenia, M. Zidour, A.A. Bousahla, F. Bourada, A. Tounsi, K.H. Benrahou, A. Tounsi, Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation, Comput. Concr. 26(2020), 213-226.
DOI: 10.12989/scs.2016.22.1.091
Google Scholar
[16]
M.S.H. Al-Furjan, M. Habibi, D.W. Jung, S. Sadeghi, H. Safarpour, A. Tounsi, G. Chen, A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel, Eng. Comput. (2020).
DOI: 10.1007/s00366-020-01130-8
Google Scholar
[17]
A.A. Bousahla, F. Bourada, S.R. Mahmoud, A. Tounsi, A. Algarni, E.AA., Bedia, A. Tounsi, Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory, Comput. Concr. 25(2020), 155-166.
Google Scholar
[18]
F. Khosravi, S.A. Hosseini, A. Tounsi, Forced Axial Vibration of a Single-Walled Carbon Nanotube Embedded in Elastic Medium under Various Moving Forces, J. Nano Res. 63(2020), 112-133.
DOI: 10.4028/www.scientific.net/jnanor.63.112
Google Scholar
[19]
M. Bellal, H. Hebali, H., Heireche, A.A. Bousahla, A. Tounsi, F., Bourada, S.R. Mahmoud, E.A.A. Bedia, A. Tounsi, Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model, Steel Compos. Struct. 34(2020), 643-655.
Google Scholar
[20]
M. Simsek, Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory, Physica E, 43(2010), 182-191.
DOI: 10.1016/j.physe.2010.07.003
Google Scholar
[21]
M.H.H. Yas, N. Samadi, Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation, Int. J. Press. Vessel. Pip. 98(2012),119-128.
DOI: 10.1016/j.ijpvp.2012.07.012
Google Scholar
[22]
M. Shaban, A. Alibeigloo, Three dimensional vibration and bending analysis of carbon nanotubes embedded in elastic medium based on theory of elasticity, Lat. Am. j. solids struct. 11(2014), 2122-2140.
DOI: 10.1590/s1679-78252014001200002
Google Scholar
[23]
S. Narendar, S. Gopalakrishnan, Terahertz wave characteristics of a single-walled carbon nanotube containing a fluid flow using the nonlocal Timoshenko beam model, Physica E, 42(2010), 1706-1712.
DOI: 10.1016/j.physe.2010.01.028
Google Scholar
[24]
P. Soltani, M.M. Taherian, A. Farshidianfar, Vibration and instability of a viscous-fluid-conveying single-walled carbon nanotube embedded in a visco-elastic medium, J. Phys. D Appl. Phys. 43(2010), 425401.
DOI: 10.1088/0022-3727/43/42/425401
Google Scholar
[25]
A.G. Shenas, S. Ziaee, P. Malekzadeh, A unified higher-order beam theory for free vibration and buckling of FGCNT-reinforced microbeams embedded in elastic medium based on unifying stress–strain gradient framework, Iran J. Sci. Technol. Trans. Mech. Eng. 43(2018), 469-492.
DOI: 10.1007/s40997-018-0171-z
Google Scholar
[26]
F. Bourada, A.A. Bousahla, A. Tounsi, E.A.A. Bedia, S.R. Mahmoud, K.H. Benrahou, A. Tounsi, Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation, Comput. Concr. 25(2020), 485-495.
Google Scholar
[27]
M.S.H. Al-Furjan, H. Safarpour, M. Habibi, M. Safarpour, A. Tounsi, A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method. Eng. Comput. (2020).
DOI: 10.1007/s00366-020-01088-7
Google Scholar
[28]
A.A.A. Ahmadi, P. Valipour, S.E. Ghasemi, Investigation on vibration of single-walled carbon nanotubes by variational iteration method, Appl. Nanosci. 6 (2016), 243-249.
DOI: 10.1007/s13204-015-0416-8
Google Scholar
[29]
K. Huang, S. Zhang, J. Li, Z. Li, Nonlocal nonlinear model of Bernoulli-Euler nanobeam with small initial curvature and its application to single-walled carbon nanotubes, Microsyst. Technol., 25(2019), 4303-4310.
DOI: 10.1007/s00542-019-04365-8
Google Scholar
[30]
A. Besseghier, H. Heireche, A.A. Bousahla, A. Tounsi, A. Benzair, Nonlinear Vibration Properties of a Zigzag Single-Walled Carbon Nanotube Embedded in a Polymer Matrix, Adv. Nano. Res., Int. J. 3(2015), 29-37.
DOI: 10.12989/anr.2015.3.1.029
Google Scholar
[31]
L. Li, Y. Hu, Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded materiall, Int. J. Eng. Sci. 107(2016), 77-97.
DOI: 10.1016/j.ijengsci.2016.07.011
Google Scholar
[32]
S. Rouhi, R. Ansari, M. Ahmadi, Finite element investigation into the thermal conductivity of carbon nanotube/aluminum nanocomposites, Mod. Phys. Lett. B, 31(2017), 1750053.
DOI: 10.1142/s0217984917500531
Google Scholar
[33]
S. Belmahi, M. Zidour, M. Meradjah, Small-scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory, Adv. Aircr. Spacecr. Sci. 6(2019), 001-018.
Google Scholar
[34]
H. Gao, B. Ji, I. L. Jager, E. Arzt, P. Fratzl, Materials become insensitive to flaws at nanoscale: Lessons from nature, Proc. Natl. Acad. Sci. USA, 100(2003), 5597-5600.
DOI: 10.1073/pnas.0631609100
Google Scholar
[35]
J.H. Bak, Y.D. Kim, S.S. Hong, B.Y. Lee, S.R. Lee, J.H. Jang, M. Kim, K. Char, S. Hong, Y.D. Park, High-frequency micromechanical resonators from aluminium–carbon nanotube nanolaminates, Nature Mater. 7(2008), 459-463.
DOI: 10.1038/nmat2181
Google Scholar
[36]
T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials withmisfitting inclusions, Acta Metall. 21(1973), 571-574.
DOI: 10.1016/0001-6160(73)90064-3
Google Scholar
[37]
A. Selmi, C. Friebel, I. Doghri, H. Hassis, Prediction of the elastic properties of single walled carbon nanotube reinforced polymers: A comparative study of several micromechanical models, Compos. Sci. Technol. 67(2007), 2071-2084.
DOI: 10.1016/j.compscitech.2006.11.016
Google Scholar
[38]
M. Aydogdu, V. Taskin, Free vibration analysis of functionally graded beams with simply-supported edges, Mater. Des. 28(2007), 1651-1656.
DOI: 10.1016/j.matdes.2006.02.007
Google Scholar
[39]
L.L. Ke, J. Yang, S. Kitipornchai, An analytical study on the nonlinear vibration of functionally graded beams, Meccanica, 45(2010), 743-752.
DOI: 10.1007/s11012-009-9276-1
Google Scholar
[40]
W. Lestari, S. Hanagud, Nonlinear vibration ofbuckled beams: some exact solutions, Int. J. Solids Struct. 38(2001), 4741-4757.
DOI: 10.1016/s0020-7683(00)00300-0
Google Scholar
[41]
M.D. Byrd, P.F. Friedman, Handbookofellipticintegralsforengineersandphysicists, Springer, Berlin, (1971).
Google Scholar
[42]
H.B. Zainuddin, M.B. Ali, Study of wheel rim impact test using finite element analysis, Proceedings of Mechanical Engineering Research Day, (2016), 141.
Google Scholar
[43]
A. Eatemadi, H. Daraee, H. Karimkhanloo, M. Kouhi, N. Zarghami, A. Akbarzadeh, M. Abasi, Y. Hanifehpour, S.W. Joo, Carbon nanotubes: properties, synthesis, purification, and medical applications, Nanoscale Res. Lett. 9(2014), 393.
DOI: 10.1186/1556-276x-9-393
Google Scholar