[1]
G. Fink, I. Günther, K. Hill, The effect of water and sanitation on child health: evidence from the demographic and health surveys 1986–2007, Int J Epidemiol 40(5) (2011) 1196-1204.
DOI: 10.1093/ije/dyr102
Google Scholar
[2]
A. Omarova, K. Tussupova, R. Berndtsson, M. Kalishev, K. Sharapatova, Protozoan parasites in drinking water: A system approach for improved water, sanitation and hygiene in developing countries, Int J Environ Res Public Health 15(3) (2018) 495.
DOI: 10.3390/ijerph15030495
Google Scholar
[3]
N.J. Ashbolt, Microbial contamination of drinking water and disease outcomes in developing regions, Toxicology 198(1-3) (2004) 229-238.
DOI: 10.1016/j.tox.2004.01.030
Google Scholar
[4]
P. Tallon, B. Magajna, C. Lofranco, K.T. Leung, Microbial indicators of faecal contamination in water: a current perspective, Water, air, and soil pollution 166(1-4) (2005) 139-166.
DOI: 10.1007/s11270-005-7905-4
Google Scholar
[5]
S.M. Hashemi Karouei, M. Eslamifar, M.A. Zazouli, Determination of fecal coliform contamination of water supplies in some rural areas of Sari, Iran with most probable number test, Journal of Mazandaran University of Medical Sciences 23(104) (2013) 89-95.
Google Scholar
[6]
W.H. Organization, Assessing microbial safety of drinking water improving approaches and methods: Improving approaches and methods, OECD Publishing (2003).
DOI: 10.1787/9789264099470-en
Google Scholar
[7]
X. Wen, F. Chen, Y. Lin, H. Zhu, F. Yuan, D. Kuang, Z. Jia, Z. Yuan, Microbial Indicators and Their Use for Monitoring Drinking Water Quality—A Review, Sustainability 12(6) (2020) 2249.
DOI: 10.3390/su12062249
Google Scholar
[8]
F.M. Reiff, Balancing the chemical and microbial risks in the disinfection of drinking water supplies in developing countries, IAHS Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences 233 (1995) 23-30.
Google Scholar
[9]
J. Lalley, D.D. Dionysiou, R.S. Varma, S. Shankara, D.J. Yang, M.N. Nadagouda, Silver-based antibacterial surfaces for drinking water disinfection—an overview, Curr Opin Chem Eng. 3 (2014) 25-29.
DOI: 10.1016/j.coche.2013.09.004
Google Scholar
[10]
X. Wang, Y. Mao, S. Tang, H. Yang, Y.F. Xie, Disinfection byproducts in drinking water and regulatory compliance: a critical review, Front environ sci (FESE) . 9(1) (2015) 3-15.
DOI: 10.1007/s11783-014-0734-1
Google Scholar
[11]
D.T. Williams, G.L. LeBel, F.M. Benoit, Disinfection by-products in Canadian drinking water, Chemosphere 34(2) (1997) 299-316.
DOI: 10.1016/s0045-6535(96)00378-5
Google Scholar
[12]
S. Sharma, A. Bhattacharya, Drinking water contamination and treatment techniques, Appl. water sci. 7(3) (2017) 1043-1067.
DOI: 10.1007/s13201-016-0455-7
Google Scholar
[13]
A. Biryukov, V. Gavrikov, L. Nikiforova, V. Shcheglov, New physical methods of disinfection of water, J. Russ. Laser Res 26(1) (2005) 13-25.
DOI: 10.1007/s10946-005-0002-8
Google Scholar
[14]
I. Gehrke, A. Geiser, A. Somborn-Schulz, Innovations in nanotechnology for water treatment, Nanotechnol Sci Appl. 8 (2015) 1.
DOI: 10.2147/nsa.s43773
Google Scholar
[15]
T. Ahmed, S. Imdad, K. Yaldram, N.M. Butt, A. Pervez, Emerging nanotechnology-based methods for water purification: a review, Desalin water treat 52(22-24) (2014) 4089-4101.
DOI: 10.1080/19443994.2013.801789
Google Scholar
[16]
K.R. Kunduru, M. Nazarkovsky, S. Farah, R.P. Pawar, A. Basu, A.J. Domb, Nanotechnology for water purification: applications of nanotechnology methods in wastewater treatment, Water Purification, Elsevier2017, pp.33-74.
DOI: 10.1016/b978-0-12-804300-4.00002-2
Google Scholar
[17]
A. Hu, A. Apblett, Nanotechnology for water treatment and purification, Springer2014.
Google Scholar
[18]
X. Li, V.M. Rotello, Nanoparticles for rapid detection of microbial threats, Nanomedicine (London, England) 6(8) (2011) 1295.
Google Scholar
[19]
J. Chen, B. Park, Recent advancements in nanobioassays and nanobiosensors for foodborne pathogenic bacteria detection, J. Food Prot. 79(6) (2016) 1055-1069.
DOI: 10.4315/0362-028x.jfp-15-516
Google Scholar
[20]
M. Saeedi, M. Eslamifar, K. Khezri, S.M. Dizaj, Applications of nanotechnology in drug delivery to the central nervous system, Biomed pharmacother 111 (2019) 666-675.
DOI: 10.1016/j.biopha.2018.12.133
Google Scholar
[21]
L. Wang, C. Hu, L. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future, Int J Nanomedicine 12 (2017) 1227.
DOI: 10.2147/ijn.s121956
Google Scholar
[22]
N.-Y. Lee, P.-R. Hsueh, W.-C. Ko, Nanoparticles in the Treatment of Infections Caused by Multidrug-Resistant Organisms, Front Pharmacol. 10 (2019) 1153.
DOI: 10.3389/fphar.2019.01153
Google Scholar
[23]
Y. Yang, C. Zhang, Z. Hu, Impact of metallic and metal oxide nanoparticles on wastewater treatment and anaerobic digestion, Environ Sci Process Impacts 15(1) (2013) 39-48.
DOI: 10.1039/c2em30655g
Google Scholar
[24]
M.M. Berekaa, Nanotechnology in wastewater treatment; influence of nanomaterials on microbial systems, Int. J. Curr. Microbiol. App. Sci 5(1) (2016) 713-726.
Google Scholar
[25]
X. Qu, P.J. Alvarez, Q. Li, Applications of nanotechnology in water and wastewater treatment, Water research 47(12) (2013) 3931-3946.
DOI: 10.1016/j.watres.2012.09.058
Google Scholar
[26]
M.A. Zazouli, M. Ahanjan, Y. Kor, M. Eslamifar, M. Hosseini, M. Yousefi, Water disinfection using Photocatalytic process with titanium dioxide Nanoparticles, Journal of Mazandaran University of Medical Sciences 25(122) (2015) 227-238.
Google Scholar
[27]
L. Guo, W. Yuan, Z. Lu, C.M. Li, Polymer/nanosilver composite coatings for antibacterial applications, Colloids Surf. A Physicochem. Eng. Asp. 439 (2013) 69-83.
DOI: 10.1016/j.colsurfa.2012.12.029
Google Scholar
[28]
S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli, Appl. Environ. Microbiol. 73(6) (2007) 1712-1720.
DOI: 10.1128/aem.02218-06
Google Scholar
[29]
M. Guzman, J. Dille, S. Godet, Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria, Nanomedicine: Nanotechnology, Biol Med. 8(1) (2012) 37-45.
DOI: 10.1016/j.nano.2011.05.007
Google Scholar
[30]
A.J. Kora, L. Rastogi, Enhancement of antibacterial activity of capped silver nanoparticles in combination with antibiotics, on model gram-negative and gram-positive bacteria, Bioinorg Chem Appl 2013 (2013).
DOI: 10.1155/2013/871097
Google Scholar
[31]
T. Ahmed, S. Imdad, S. Ashraf, N.M. Butt, Effect of size and surface ligands of silver (Ag) nanoparticles on waterborne bacteria, International Journal of Theoretical and Applied Nanotechnology 1(1) (2012) 111-116.
DOI: 10.11159/ijtan.2012.017
Google Scholar
[32]
G.-A. Martínez-Castañon, N. Nino-Martinez, F. Martinez-Gutierrez, J. Martinez-Mendoza, F. Ruiz, Synthesis and antibacterial activity of silver nanoparticles with different sizes, J Nanopart Res 10(8) (2008) 1343-1348.
DOI: 10.1007/s11051-008-9428-6
Google Scholar
[33]
P. Jain, T. Pradeep, Potential of silver nanoparticle‐coated polyurethane foam as an antibacterial water filter, Biotechnology and bioengineering 90(1) (2005) 59-63.
DOI: 10.1002/bit.20368
Google Scholar
[34]
T.A. Dankovich, D.G. Gray, Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment, Environ sci technol 45(5) (2011) 1992-1998.
DOI: 10.1021/es103302t
Google Scholar
[35]
L. Al-Issai, W. Elshorbagy, M.A. Maraqa, M. Hamouda, A.M. Soliman, Use of Nanoparticles for the Disinfection of Desalinated Water, Water 11(3) (2019) 559.
DOI: 10.3390/w11030559
Google Scholar
[36]
S. Deshmukh, S. Patil, S. Mullani, S. Delekar, Silver nanoparticles as an effective disinfectant: A review, Mater Sci Eng: C 97 (2019) 954-965.
DOI: 10.1016/j.msec.2018.12.102
Google Scholar
[37]
A. Abbaszadegan, Y. Ghahramani, A. Gholami, B. Hemmateenejad, S. Dorostkar, M. Nabavizadeh, H. Sharghi, The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study, J. Nanomaterials 2015 (2015).
DOI: 10.1155/2015/720654
Google Scholar
[38]
J. Kim, I. Cho, I. Kim, C. Kim, N.H. Heo, S. Suh, Manufacturing of anti-viral inorganic materials from colloidal silver and titanium oxide, Revue Roumaine De Chimie 51(11) (2006) 1121.
Google Scholar
[39]
Q.L. Feng, J. Wu, G. Chen, F. Cui, T. Kim, J. Kim, A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus, J biomed mater res 52(4) (2000) 662-668.
DOI: 10.1002/1097-4636(20001215)52:4<662::aid-jbm10>3.0.co;2-3
Google Scholar
[40]
J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramírez, M.J. Yacaman, The bactericidal effect of silver nanoparticles, Nanotechnology 16(10) (2005) 2346.
DOI: 10.1088/0957-4484/16/10/059
Google Scholar
[41]
A. Rus, V.-D. Leordean, P. Berce, Silver Nanoparticles (AgNP) impregnated filters in drinking water disinfection, MATEC Web of Conferences, EDP Sciences, 2017, p.07007.
DOI: 10.1051/matecconf/201713707007
Google Scholar
[42]
E.A.S. Dimapilis, C.-S. Hsu, R.M.O. Mendoza, M.-C. Lu, Zinc oxide nanoparticles for water disinfection, Sustain Environmen Res 28(2) (2018) 47-56.
DOI: 10.1016/j.serj.2017.10.001
Google Scholar
[43]
N. Yu, M. Zhang, M.N. Islam, L. Lu, Q. Liu, X. Cheng, Combined sterilizing effects of nano-ZnO and ultraviolet on convenient vegetable dishes, LWT-Food Sci Technol 61(2) (2015) 638-643.
DOI: 10.1016/j.lwt.2014.12.042
Google Scholar
[44]
P.A. Kareem, E.G. Alsammak, Y.J. Abdullah, Q.M. Bdaiwi, Estimation of antibacterial activity of zinc oxide, titanium dioxide, and silver nanoparticles against multidrug-resistant bacteria isolated from clinical cases in Amara City, Iraq, Drug Invent Today 11(11) (2019).
Google Scholar
[45]
Y. Xie, Y. He, P.L. Irwin, T. Jin, X. Shi, Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni, Appl. Environ. Microbiol. 77(7) (2011) 2325-2331.
DOI: 10.1128/aem.02149-10
Google Scholar
[46]
V. Tiwari, N. Mishra, K. Gadani, P.S. Solanki, N. Shah, M. Tiwari, Mechanism of anti-bacterial activity of zinc oxide nanoparticle against carbapenem-resistant Acinetobacter baumannii, Front microbiol 9 (2018) 1218.
DOI: 10.3389/fmicb.2018.01218
Google Scholar
[47]
A. Hadi, A. Hashim, Engineering of Ceramics Nanoparticles in Medicine and Environmental Applications: Recent Review.
Google Scholar
[48]
W. Salem, D.R. Leitner, F.G. Zingl, G. Schratter, R. Prassl, W. Goessler, J. Reidl, S. Schild, Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli, Int J Med Microbiol 305(1) (2015) 85-95.
DOI: 10.1016/j.ijmm.2014.11.005
Google Scholar
[49]
Y. Zhao, X. Wang, Z. Wang, X. Li, Y. Ren, Nanoparticle fouling and its combination with organic fouling during forward osmosis process for silver nanoparticles removal from simulated wastewater, Scientific reports 6(1) (2016) 1-10.
DOI: 10.1038/srep25859
Google Scholar
[50]
L. Mpenyana-Monyatsi, N.H. Mthombeni, M.S. Onyango, M.N. Momba, Cost-effective filter materials coated with silver nanoparticles for the removal of pathogenic bacteria in groundwater, Int j environ res public health 9(1) (2012) 244-271.
DOI: 10.3390/ijerph9010244
Google Scholar
[51]
Y.-F. Huang, Y.-F. Wang, X.-P. Yan, Amine-functionalized magnetic nanoparticles for rapid capture and removal of bacterial pathogens, Environ sci technol 44(20) (2010) 7908-7913.
DOI: 10.1021/es102285n
Google Scholar
[52]
J.P. Ruparelia, A.K. Chatterjee, S.P. Duttagupta, S. Mukherji, Strain specificity in antimicrobial activity of silver and copper nanoparticles, Acta biomaterialia 4(3) (2008) 707-716.
DOI: 10.1016/j.actbio.2007.11.006
Google Scholar
[53]
M. Khoshkbejari, A. Jafari, M. Safari, Ag/ZnO nanoparticles as novel antibacterial agent against of Escherichia coli infection, in vitro & in vivo, Orient J Che 31(3) (2015) 1437-1445.
DOI: 10.13005/ojc/310322
Google Scholar
[54]
T. Esakkimuthu, D. Sivakumar, S. Akila, Application of nanoparticles in wastewater treatment, Pollut. Res 33(03) (2014) 567-571.
Google Scholar
[55]
D.K. Tiwari, J. Behari, P. Sen, Application of nanoparticles in waste water treatment 1, (2008).
Google Scholar
[56]
J.G. McEvoy, Z. Zhang, Antimicrobial and photocatalytic disinfection mechanisms in silver-modified photocatalysts under dark and light conditions, J Photochem Photobiol C: Photochemistry Reviews 19 (2014) 62-75.
DOI: 10.1016/j.jphotochemrev.2014.01.001
Google Scholar
[57]
W. Wang, G. Li, D. Xia, T. An, H. Zhao, P.K. Wong, Photocatalytic nanomaterials for solar-driven bacterial inactivation: recent progress and challenges, Environ Sci: Nano 4(4) (2017) 782-799.
DOI: 10.1039/c7en00063d
Google Scholar
[58]
K.-H. Cho, J.-E. Park, T. Osaka, S.-G. Park, The study of antimicrobial activity and preservative effects of nanosilver ingredient, Electrochimica Acta 51(5) (2005) 956-960.
DOI: 10.1016/j.electacta.2005.04.071
Google Scholar
[59]
O. Choi, C.-P. Yu, G.E. Fernández, Z. Hu, Interactions of nanosilver with Escherichia coli cells in planktonic and biofilm cultures, Water research 44(20) (2010) 6095-6103.
DOI: 10.1016/j.watres.2010.06.069
Google Scholar
[60]
E.W. Rice, R.B. Baird, A.D. Eaton, L.S. Clesceri, Standard methods for the examination of water and wastewater, American Public Health Association: Washington, DC, USA 10 (2012).
Google Scholar
[61]
V.D. Adams, Water and wastewater examination manual, CRC Press1989.
Google Scholar
[62]
F.Y. Ramírez-Castillo, A. Loera-Muro, M. Jacques, P. Garneau, F.J. Avelar-González, J. Harel, A.L. Guerrero-Barrera, Waterborne pathogens: detection methods and challenges, Pathogens 4(2) (2015) 307-334.
DOI: 10.3390/pathogens4020307
Google Scholar
[63]
A.-V. Jung, P. Le Cann, B. Roig, O. Thomas, E. Baurès, M.-F. Thomas, Microbial contamination detection in water resources: interest of current optical methods, trends and needs in the context of climate change, Int J Environ Res public health 11(4) (2014) 4292-4310.
DOI: 10.3390/ijerph110404292
Google Scholar
[64]
P.K. Pandey, P.H. Kass, M.L. Soupir, S. Biswas, V.P. Singh, Contamination of water resources by pathogenic bacteria, Amb Express 4(1) (2014) 51.
DOI: 10.1186/s13568-014-0051-x
Google Scholar
[65]
T. Edition, Guidelines for Drinking-water Quality, WHO Chronicle 1(3) (2008) 334-415.
Google Scholar
[66]
W.H. Organization, Guidelines for Drinking Water Quality: incorporating 1st and 2nd addenda, Vol. 1, Recommendations–3rd, WHO Press: Geneva, Switzerland, (2008).
Google Scholar
[67]
A. Ojha, Nanomaterials for removal of waterborne pathogens: opportunities and challenges, Waterborne Pathogens, Elsevier2020, pp.385-432.
DOI: 10.1016/b978-0-12-818783-8.00019-0
Google Scholar
[68]
Q. Li, S. Mahendra, D.Y. Lyon, L. Brunet, M.V. Liga, D. Li, P.J. Alvarez, Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications, Water research 42(18) (2008) 4591-4602.
DOI: 10.1016/j.watres.2008.08.015
Google Scholar
[69]
Y. Liu, L. He, A. Mustapha, H. Li, Z. Hu, M. Lin, Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7, J Appl Microbiol 107(4) (2009) 1193-1201.
DOI: 10.1111/j.1365-2672.2009.04303.x
Google Scholar
[70]
R.S. Tomar, M. Agarwal, A. Jyoti, Synthesis, Characterization and Antimicrobial Activity of Zinc Oxide Nanoparticles against Drug-Resistant Escherichia coli Isolated from Potable Water, J Chem Pharm Sci 11 (2018) 100-103.
DOI: 10.30558/jchps.20181101018
Google Scholar
[71]
F. Edition, Guidelines for drinking-water quality, WHO chronicle 38(4) (2011) 104-8.
Google Scholar
[72]
W.H. Organization, Zinc in drinking water, Background document for development of guidelines for drinking-water quality. Health criteria and other supporting information 1 (2003).
Google Scholar
[73]
U.H. Abo-Shama, H. El-Gendy, W.S. Mousa, R.A. Hamouda, W.E. Yousuf, H.F. Hetta, E.E. Abdeen, Synergistic and Antagonistic Effects of Metal Nanoparticles in Combination with Antibiotics Against Some Reference Strains of Pathogenic Microorganisms, Infect Drug Resist 13 (2020) 351.
DOI: 10.2147/idr.s234425
Google Scholar
[74]
N. Sharma, S. Jandaik, S. Kumar, Synergistic activity of doped zinc oxide nanoparticles with antibiotics: ciprofloxacin, ampicillin, fluconazole and amphotericin B against pathogenic microorganisms, Anais da Academia Brasileira de Ciências 88(3) (2016) 1689-1698.
DOI: 10.1590/0001-3765201620150713
Google Scholar
[75]
M. Eltarahony, S. Zaki, M. ElKady, D. Abd-El-Haleem, Biosynthesis, characterization of some combined nanoparticles, and its biocide potency against a broad spectrum of pathogens, J. Nanomaterials 2018 (2018).
DOI: 10.1155/2018/5263814
Google Scholar
[76]
J.K. Patra, K.-H. Baek, Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effects, Front Microbiol. 8 (2017) 167.
DOI: 10.3389/fmicb.2017.00167
Google Scholar
[77]
K.E. Alzahrani, A.A. Niazy, A.M. Alswieleh, R. Wahab, A.M. El-Toni, H.S. Alghamdi, Antibacterial activity of trimetal (CuZnFe) oxide nanoparticles, Int J Nanomedicine 13 (2018) 77.
DOI: 10.2147/ijn.s154218
Google Scholar
[78]
M. Azizi-Lalabadi, A. Ehsani, B. Divband, M. Alizadeh-Sani, Antimicrobial activity of Titanium dioxide and Zinc oxide nanoparticles supported in 4A zeolite and evaluation the morphological characteristic, Scientific reports 9(1) (2019) 1-10.
DOI: 10.1038/s41598-019-54025-0
Google Scholar
[79]
Y.N. Slavin, J. Asnis, U.O. Häfeli, H. Bach, Metal nanoparticles: understanding the mechanisms behind antibacterial activity, J nanobiotechnology 15(1) (2017) 65.
DOI: 10.1186/s12951-017-0308-z
Google Scholar
[80]
M. Vallet-Regí, B. González, I. Izquierdo-Barba, Nanomaterials as promising alternative in the infection treatment, Int J Mol Sci 20(15) (2019) 3806.
DOI: 10.3390/ijms20153806
Google Scholar
[81]
A. Thangam, S. Pritam Ramalakshmi, Effect Of ZnO nanoparticles against strains of Escherichia coli, Asian J Pharm Clin Res 7(5) (2014) 202-206.
Google Scholar
[82]
F. Zarpelon, D. Galiotto, C. Aguzzoli, L.N. Carli, C.A. Figueroa, I.J.R. Baumvol, G. Machado, J. da Silva Crespo, M. Giovanela, Removal of coliform bacteria from industrial wastewaters using polyelectrolytes/silver nanoparticles self-assembled thin films, J Environ Chem Eng. 4(1) (2016) 137-146.
DOI: 10.1016/j.jece.2015.11.013
Google Scholar
[83]
M.T. Moustafa, Removal of pathogenic bacteria from wastewater using silver nanoparticles synthesized by two fungal species, Water Science 31(2) (2017) 164-176.
DOI: 10.1016/j.wsj.2017.11.001
Google Scholar
[84]
S. Gurunathan, J.W. Han, D.-N. Kwon, J.-H. Kim, Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria, Nanoscale Res Lett. 9(1) (2014) 373.
DOI: 10.1186/1556-276x-9-373
Google Scholar
[85]
H.R. Ali, A.N. Emam, N.F. Koraney, E.G. Hefny, S.F. Ali, Combating the prevalence of water-borne bacterial pathogens using anisotropic structures of silver nanoparticles, J Nanopart Res 22(2) (2020) 47.
DOI: 10.1007/s11051-020-4760-6
Google Scholar
[86]
M. Hamad, Biosynthesis of silver nanoparticles by fungi and their antibacterial activity, Int J Environ Sci Technol IJEST. 16(2) (2019) 1015-1024.
DOI: 10.1007/s13762-018-1814-8
Google Scholar