[1]
P. Jenu et al., Ferrite-Based Exchange-Coupled Hard – Soft Magnets Fabricated by Spark Plasma Sintering, J. Am. Ceram. Soc. 99 (2016) 1927–(1934).
DOI: 10.1111/jace.14193
Google Scholar
[2]
C. Granados-miralles, M. Saura-mu, and H. L. Andersen, MATERIALS CHEMISTRY: Expanding the tunability and applicability of exchange-coupled/decoupled magnetic nanocomposites, Mater. Chem. Front. 4 (2020) 1222-1230.
DOI: 10.1039/c9qm00713j
Google Scholar
[3]
A. Nsabimana et al., Multifunctional Magnetic Fe3O4/Nitrogen-Doped Porous Carbon Nanocomposites for Removal of Dyes and Sensing Applications, Appl. Surf. Sci. 467 (2018) 89-97.
DOI: 10.1016/j.apsusc.2018.10.119
Google Scholar
[4]
Ö. Lalegül-ülker and Y. M. Elçin, Magnetic and electrically conductive silica-coated iron oxide/polyaniline nanocomposites for biomedical applications, Mater. Sci. Eng. C. 119 (2021) 111600.
DOI: 10.1016/j.msec.2020.111600
Google Scholar
[5]
H. Nikmanesh, Effect of multi dopant barium hexaferrite nanoparticles on the structural, magnetic, and X-Ku bands microwave absorption properties, J. Alloys Compd. 708 (2017) 99–107.
DOI: 10.1016/j.jallcom.2017.02.308
Google Scholar
[6]
S. Omiddezyani, V. Youse, E. Houshfar, S. Gharehkhani, M. Ashjaee, and I. Khazaee, On-demand heat transfer augmentation using magnetically triggered ferrofluid containing eco-friendly treated CoFe2O4/rGO, Powder Tech. 378 (2021) 468–486.
DOI: 10.1016/j.powtec.2020.10.030
Google Scholar
[7]
M. A. Almessiere, Y. Slimani, and A. Baykal, Exchange spring magnetic behavior of Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)x nanocomposites fabricated by a one-pot citrate sol-gel combustion method, J. Alloys Compd. 762 (2018) 389-397.
DOI: 10.1016/j.jallcom.2018.05.232
Google Scholar
[8]
X. Zheng, Y. Li, and X. Fun, Design of Efficient Microwave Absorbers Based on Cobalt-Based MOF/SrFe12CoTiO19 Carbon Nanofibers Nanocomposite, J. Supercond. Nov. Magn. 67 (2020) 2745–2751.
DOI: 10.1007/s10948-020-05499-x
Google Scholar
[9]
M. A. Almessiere, Y. Slimani, and A. Baykal, Structural, morphological and magnetic properties of hard/soft SrFe12-xVxO19/(Ni0.5Mn0.5Fe2O4)y nanocomposites: Effect of vanadium substitution, J. Alloys Compd. 767 (2018) 966–975.
DOI: 10.1016/j.jallcom.2018.07.212
Google Scholar
[10]
W. Feng, H. Liu, P. Hui, H. Yang, J. Li, and J. S. Wang, Preparation and Properties of SrFe12O19/ZnFe2O4 Core/Shell Nano-powder Microwave Absorber, Integr. Ferroelectr. An Int. J. 152 (2014) 120–126.
DOI: 10.1080/10584587.2014.901882
Google Scholar
[11]
S. Tyagi, P. Verma, H. B. Baskey, R. Chandra, V. Agarwala, and T. Chand, Microwave absorption study of carbon nano tubes dispersed hard/soft ferrite nanocomposite, Ceram. Int. 38 (2012).
DOI: 10.1016/j.ceramint.2012.02.034
Google Scholar
[12]
L. Cao et al., Interface exchange coupling induced enhancements in coercivity and maximal magnetic energy product of BaFe12O19/Co3O4 nanocomposites, J. Alloys Compd. 715 (2017) 199–205.
DOI: 10.1016/j.jallcom.2017.04.284
Google Scholar
[13]
L. Z. Zhao, Q. Zhou, J. S. Zhang, D. L. Jiao, Z. W. Liu, and J. M. Greneche, A nanocomposite structure in directly cast NdFeB based alloy with low Nd content for potential anisotropic permanent magnets, Mater. Des. 117 (2017) 326–331.
DOI: 10.1016/j.matdes.2017.01.008
Google Scholar
[14]
P. Maltoni et al., Tuning the Magnetic Properties of Hard − Soft SrFe12O19/CoFe2O4 Nanostructures via Composition/Interphase Coupling, J. Phys. Chem. 125 (2021) 5927-5936.
DOI: 10.1021/acs.jpcc.1c00355.s001
Google Scholar
[15]
H. M. Sánchez, L. E. Z. Alfonso, J. S. T. Hernandez, D. Salazar, and G. A. P. Alcázar, Improving the ferromagnetic exchange coupling in hard T-Mn53.3Al45.0C1.7 and Soft Mn50B50 magnetic alloys, Appl. Phys. A. 126:843 (2020) 1–10.
DOI: 10.1007/s00339-020-04025-z
Google Scholar
[16]
P. Sahu, S. Narayan, T. Ranjit, and P. Rakesh, Effect of grain size on electric transport and magnetic behavior of strontium hexaferrite (SrFe12O19), Appl. Phys. A. 123:3 (2017) 1-10.
DOI: 10.1007/s00339-016-0601-y
Google Scholar
[17]
M. . Kim, Chul Sung, Zha L, Li, Micromagnetic simulation for optimizing nanocomposite Nd2Fe14B/-Fe permanent magnets by changing grain size and volume fraction, J. Magn. Magn. Mater. 523 (2020) 1-20.
DOI: 10.1016/j.jmmm.2020.167622
Google Scholar
[18]
X. Chen, C. Cen, L. Zhou, R. Cao, Z. Yi, and Y. Tang, Magnetic properties and reverse magnetization process of anisotropic nanocomposite permanent magnet, J. Magn. Magn. Mater. 483 (2019) 152–157.
DOI: 10.1016/j.jmmm.2019.03.104
Google Scholar
[19]
A. M. Bolarín-miró, Synthesis of M-type SrFe12O19 by mechanosynthesis assisted by spark plasma sintering, J. Alloys Compd. 643 (2015) 226–230.
DOI: 10.1016/j.jallcom.2014.11.124
Google Scholar
[20]
T. Tatarchuk et al., Synthesis, morphology, crystallite size and adsorption properties of nanostructured Mg-Zn ferrites with enhanced porous structure, J. Alloy. Compd. 819 (2020) 1-15.
DOI: 10.1016/j.jallcom.2019.152945
Google Scholar
[21]
D. Chen, Y. Meng, K. H. Gandha, D. Zeng, H. Yu, and J. P. Liu, Morphology control of hexagonal strontium ferrite micro/nano-crystals, AIP Adv. 7 (2017) 1–6.
DOI: 10.1063/1.4974283
Google Scholar
[22]
A. Manaf, A. A. Fahmi, and E. Yustanti, The Effect of Diameter Ratio between Transducers and Reactor in Sonication-Assisted Synthesis of Ba0.7Sr0.3TiO3 and Ba0.3Sr0.7TiO3 Nanoparticles, AIP Conf. Proc. 1729 (2016) 1–5.
DOI: 10.1063/1.4946941
Google Scholar
[23]
K. N. Fitriana, M. Ayu, E. Hafizah, and A. Manaf, Substitution Structural Modification of Strontium Hexaferrite Through Destruction Process and Ionic Substitution, AIP Conference Proc. 1725 (2016) 1-7.
DOI: 10.1063/1.4945476
Google Scholar
[24]
N. Idayanti and A. Manaf, Investigation of Grain Exchange Interaction Effects on The Magnetic Properties of Strontium Hexaferrite Magnets, KnE Eng. 2019 (2018) 223–234.
DOI: 10.18502/keg.v1i2.4447
Google Scholar
[25]
E. Yustanti, M. Ayu, E. Hafizah, and A. Manaf, Exploring the Effect of Particle Concentration and Irradiation Time in the Synthesis of Barium Strontium Titanate (BST) Ba(1-X)SrxTiO3 (X:0-1) Nanoparticles by High Power Ultrasonic, Int. J. Technol. 6 (2016) 819–828.
DOI: 10.14716/ijtech.v7i6.4926
Google Scholar
[26]
T. Dippong, O. Cadar, I. Grigore, M. Lazar, G. Borodi, and E. Andrea, Influence of ferrite to silica ratio and thermal treatment on porosity, surface, microstructure and magnetic properties of Zn0.5Ni0.5Fe2O4/SiO2 nanocomposites, J. Alloys Compd. 828 (2020) 1-11.
DOI: 10.1016/j.jallcom.2020.154409
Google Scholar
[27]
C. Caizer, Nanoparticle Size Effect on Some Magnetic Properties, in: M. Aliofkhazraei (ed.), Handbook of Nanoparticles, Springer International Publishing, Switzerland, 2016, pp.475-519.
DOI: 10.1007/978-3-319-15338-4_24
Google Scholar
[28]
R. Qindeel and N. H. Alonizan, Structural, dielectric and magnetic properties of cobalt based spinel ferrites, Curr. Appl. Phys. 18 (2018) 519–525.
DOI: 10.1016/j.cap.2018.03.004
Google Scholar
[29]
G. B. Han et al., Effective anisotropy between magnetically soft and hard grains in nanocomposite magnets, Appl. Phys. A Mater. Sci. Process. 81 (2005) 579–582.
DOI: 10.1007/s00339-004-2741-8
Google Scholar
[30]
L. Pan, A novel method to fabricate CoFe2O4/SrFe12O19 composite ferrite nanofibers with enhanced exchange coupling effect, Nanoscale Res. Lett. 10:131 (2015) 1–7.
DOI: 10.1186/s11671-015-0829-z
Google Scholar
[31]
T. Thi, V. Nga, N. T. Lan, T. T. Loan, and H. Ha, Structure and Magnetic Properties of SrFe12O19/CoFe2O4 Nanocomposite Ferrite, J. Sci. Math. 35 (2019) 32–41.
DOI: 10.25073/2588-1124/vnumap.4319
Google Scholar
[32]
A. Hilczer, Dielectric and magnetic response of SrFe12O19-CoFe2O4 composites obtained by solid state reaction, Mater. Sci. Eng. B 207 (2016) 47–55.
DOI: 10.1016/j.mseb.2016.02.003
Google Scholar
[33]
A. Xia, Magnetic properties of sintered SrFe12O19-CoFe2O4 nanocomposites with exchange coupling, J. Alloys Compd. 653 (2015) 108–116.
DOI: 10.1016/j.jallcom.2015.08.252
Google Scholar
[34]
A. Poorbafrani, H. Salamati, and P. Kameli, Exchange spring behavior in Co0.6Zn0.4Fe2O4/SrFe10.5O16.75 nanocomposites, Ceram. Int. 41 (2015) 1603–1608.
DOI: 10.1016/j.ceramint.2014.09.097
Google Scholar