Physical and Magnetic Characterization of Hard/Soft SrFe12O19/CoFe2O4 Nanocomposite Magnets Made by Mechanical Alloying and Ultrasonic Irradiation

Article Preview

Abstract:

In this study, the particle sizes of SrFe12O19 in hard/soft SrFe12O19/CoFe2O4 nanocomposite magnets made using mechanical alloying and ultrasonic irradiation were investigated. SrFe12O19/CoFe2O4 nanocomposites were combined in a ratio of 75:25, with each magnetic material being prepared separately. SrFe12O19 powder was prepared from Fe2O3 and SrCO3 powder by mechanical alloying and ultrasonic irradiation for different times, 0, 3, 6, 9, and 12 h. Varying the ultrasonic time during the preparation of the SrFe12O19 samples resulted in differences in morphological characteristics, crystal structure, particle size, crystal size, microstrain, density, porosity, and magnetic properties. The longer the ultrasonic time, the crystal size and particle size decreases, the density increases, and the porosity reduction which affects the magnetic properties. SrFe12O19 after 12 h ultrasonic process reach Ms value = 61.29 emu/g. CoFe2O4 powder was produced from Fe2O3 and CoCO3 powder by mechanical alloying with a 10 h milling time. Furthermore, each SrFe12O19 sample was composited with CoFe2O4 powder by ultrasonic irradiation for 1 h and these composite samples also showed different characteristics, where there is an increase in Mr and Ms compared to the single SrFe12O19. The morphology, crystal structure, particle size, and magnetic properties of the samples were measured using scanning electron microscopy, X-ray diffraction, particle size analysis, and PERMAGRAPH. The crystal size and microstrain were calculated using a Williamson–Hall plot, and density and porosity were determined using Archimedes’ law.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-66

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Jenu et al., Ferrite-Based Exchange-Coupled Hard – Soft Magnets Fabricated by Spark Plasma Sintering, J. Am. Ceram. Soc. 99 (2016) 1927–(1934).

DOI: 10.1111/jace.14193

Google Scholar

[2] C. Granados-miralles, M. Saura-mu, and H. L. Andersen, MATERIALS CHEMISTRY: Expanding the tunability and applicability of exchange-coupled/decoupled magnetic nanocomposites, Mater. Chem. Front. 4 (2020) 1222-1230.

DOI: 10.1039/c9qm00713j

Google Scholar

[3] A. Nsabimana et al., Multifunctional Magnetic Fe3O4/Nitrogen-Doped Porous Carbon Nanocomposites for Removal of Dyes and Sensing Applications, Appl. Surf. Sci. 467 (2018) 89-97.

DOI: 10.1016/j.apsusc.2018.10.119

Google Scholar

[4] Ö. Lalegül-ülker and Y. M. Elçin, Magnetic and electrically conductive silica-coated iron oxide/polyaniline nanocomposites for biomedical applications, Mater. Sci. Eng. C. 119 (2021) 111600.

DOI: 10.1016/j.msec.2020.111600

Google Scholar

[5] H. Nikmanesh, Effect of multi dopant barium hexaferrite nanoparticles on the structural, magnetic, and X-Ku bands microwave absorption properties, J. Alloys Compd. 708 (2017) 99–107.

DOI: 10.1016/j.jallcom.2017.02.308

Google Scholar

[6] S. Omiddezyani, V. Youse, E. Houshfar, S. Gharehkhani, M. Ashjaee, and I. Khazaee, On-demand heat transfer augmentation using magnetically triggered ferrofluid containing eco-friendly treated CoFe2O4/rGO, Powder Tech. 378 (2021) 468–486.

DOI: 10.1016/j.powtec.2020.10.030

Google Scholar

[7] M. A. Almessiere, Y. Slimani, and A. Baykal, Exchange spring magnetic behavior of Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)x nanocomposites fabricated by a one-pot citrate sol-gel combustion method, J. Alloys Compd. 762 (2018) 389-397.

DOI: 10.1016/j.jallcom.2018.05.232

Google Scholar

[8] X. Zheng, Y. Li, and X. Fun, Design of Efficient Microwave Absorbers Based on Cobalt-Based MOF/SrFe12CoTiO19 Carbon Nanofibers Nanocomposite, J. Supercond. Nov. Magn. 67 (2020) 2745–2751.

DOI: 10.1007/s10948-020-05499-x

Google Scholar

[9] M. A. Almessiere, Y. Slimani, and A. Baykal, Structural, morphological and magnetic properties of hard/soft SrFe12-xVxO19/(Ni0.5Mn0.5Fe2O4)y nanocomposites: Effect of vanadium substitution, J. Alloys Compd. 767 (2018) 966–975.

DOI: 10.1016/j.jallcom.2018.07.212

Google Scholar

[10] W. Feng, H. Liu, P. Hui, H. Yang, J. Li, and J. S. Wang, Preparation and Properties of SrFe12O19/ZnFe2O4 Core/Shell Nano-powder Microwave Absorber, Integr. Ferroelectr. An Int. J. 152 (2014) 120–126.

DOI: 10.1080/10584587.2014.901882

Google Scholar

[11] S. Tyagi, P. Verma, H. B. Baskey, R. Chandra, V. Agarwala, and T. Chand, Microwave absorption study of carbon nano tubes dispersed hard/soft ferrite nanocomposite, Ceram. Int. 38 (2012).

DOI: 10.1016/j.ceramint.2012.02.034

Google Scholar

[12] L. Cao et al., Interface exchange coupling induced enhancements in coercivity and maximal magnetic energy product of BaFe12O19/Co3O4 nanocomposites, J. Alloys Compd. 715 (2017) 199–205.

DOI: 10.1016/j.jallcom.2017.04.284

Google Scholar

[13] L. Z. Zhao, Q. Zhou, J. S. Zhang, D. L. Jiao, Z. W. Liu, and J. M. Greneche, A nanocomposite structure in directly cast NdFeB based alloy with low Nd content for potential anisotropic permanent magnets, Mater. Des. 117 (2017) 326–331.

DOI: 10.1016/j.matdes.2017.01.008

Google Scholar

[14] P. Maltoni et al., Tuning the Magnetic Properties of Hard − Soft SrFe12O19/CoFe2O4 Nanostructures via Composition/Interphase Coupling, J. Phys. Chem. 125 (2021) 5927-5936.

DOI: 10.1021/acs.jpcc.1c00355.s001

Google Scholar

[15] H. M. Sánchez, L. E. Z. Alfonso, J. S. T. Hernandez, D. Salazar, and G. A. P. Alcázar, Improving the ferromagnetic exchange coupling in hard T-Mn53.3Al45.0C1.7 and Soft Mn50B50 magnetic alloys, Appl. Phys. A. 126:843 (2020) 1–10.

DOI: 10.1007/s00339-020-04025-z

Google Scholar

[16] P. Sahu, S. Narayan, T. Ranjit, and P. Rakesh, Effect of grain size on electric transport and magnetic behavior of strontium hexaferrite (SrFe12O19), Appl. Phys. A. 123:3 (2017) 1-10.

DOI: 10.1007/s00339-016-0601-y

Google Scholar

[17] M. . Kim, Chul Sung, Zha L, Li, Micromagnetic simulation for optimizing nanocomposite Nd2Fe14B/-Fe permanent magnets by changing grain size and volume fraction, J. Magn. Magn. Mater. 523 (2020) 1-20.

DOI: 10.1016/j.jmmm.2020.167622

Google Scholar

[18] X. Chen, C. Cen, L. Zhou, R. Cao, Z. Yi, and Y. Tang, Magnetic properties and reverse magnetization process of anisotropic nanocomposite permanent magnet, J. Magn. Magn. Mater. 483 (2019) 152–157.

DOI: 10.1016/j.jmmm.2019.03.104

Google Scholar

[19] A. M. Bolarín-miró, Synthesis of M-type SrFe12O19 by mechanosynthesis assisted by spark plasma sintering, J. Alloys Compd. 643 (2015) 226–230.

DOI: 10.1016/j.jallcom.2014.11.124

Google Scholar

[20] T. Tatarchuk et al., Synthesis, morphology, crystallite size and adsorption properties of nanostructured Mg-Zn ferrites with enhanced porous structure, J. Alloy. Compd. 819 (2020) 1-15.

DOI: 10.1016/j.jallcom.2019.152945

Google Scholar

[21] D. Chen, Y. Meng, K. H. Gandha, D. Zeng, H. Yu, and J. P. Liu, Morphology control of hexagonal strontium ferrite micro/nano-crystals, AIP Adv. 7 (2017) 1–6.

DOI: 10.1063/1.4974283

Google Scholar

[22] A. Manaf, A. A. Fahmi, and E. Yustanti, The Effect of Diameter Ratio between Transducers and Reactor in Sonication-Assisted Synthesis of Ba0.7Sr0.3TiO3 and Ba0.3Sr0.7TiO3 Nanoparticles, AIP Conf. Proc. 1729 (2016) 1–5.

DOI: 10.1063/1.4946941

Google Scholar

[23] K. N. Fitriana, M. Ayu, E. Hafizah, and A. Manaf, Substitution Structural Modification of Strontium Hexaferrite Through Destruction Process and Ionic Substitution, AIP Conference Proc. 1725 (2016) 1-7.

DOI: 10.1063/1.4945476

Google Scholar

[24] N. Idayanti and A. Manaf, Investigation of Grain Exchange Interaction Effects on The Magnetic Properties of Strontium Hexaferrite Magnets, KnE Eng. 2019 (2018) 223–234.

DOI: 10.18502/keg.v1i2.4447

Google Scholar

[25] E. Yustanti, M. Ayu, E. Hafizah, and A. Manaf, Exploring the Effect of Particle Concentration and Irradiation Time in the Synthesis of Barium Strontium Titanate (BST) Ba(1-X)SrxTiO3 (X:0-1) Nanoparticles by High Power Ultrasonic, Int. J. Technol. 6 (2016) 819–828.

DOI: 10.14716/ijtech.v7i6.4926

Google Scholar

[26] T. Dippong, O. Cadar, I. Grigore, M. Lazar, G. Borodi, and E. Andrea, Influence of ferrite to silica ratio and thermal treatment on porosity, surface, microstructure and magnetic properties of Zn0.5Ni0.5Fe2O4/SiO2 nanocomposites, J. Alloys Compd. 828 (2020) 1-11.

DOI: 10.1016/j.jallcom.2020.154409

Google Scholar

[27] C. Caizer, Nanoparticle Size Effect on Some Magnetic Properties, in: M. Aliofkhazraei (ed.), Handbook of Nanoparticles, Springer International Publishing, Switzerland, 2016, pp.475-519.

DOI: 10.1007/978-3-319-15338-4_24

Google Scholar

[28] R. Qindeel and N. H. Alonizan, Structural, dielectric and magnetic properties of cobalt based spinel ferrites, Curr. Appl. Phys. 18 (2018) 519–525.

DOI: 10.1016/j.cap.2018.03.004

Google Scholar

[29] G. B. Han et al., Effective anisotropy between magnetically soft and hard grains in nanocomposite magnets, Appl. Phys. A Mater. Sci. Process. 81 (2005) 579–582.

DOI: 10.1007/s00339-004-2741-8

Google Scholar

[30] L. Pan, A novel method to fabricate CoFe2O4/SrFe12O19 composite ferrite nanofibers with enhanced exchange coupling effect, Nanoscale Res. Lett. 10:131 (2015) 1–7.

DOI: 10.1186/s11671-015-0829-z

Google Scholar

[31] T. Thi, V. Nga, N. T. Lan, T. T. Loan, and H. Ha, Structure and Magnetic Properties of SrFe12O19/CoFe2O4 Nanocomposite Ferrite, J. Sci. Math. 35 (2019) 32–41.

DOI: 10.25073/2588-1124/vnumap.4319

Google Scholar

[32] A. Hilczer, Dielectric and magnetic response of SrFe12O19-CoFe2O4 composites obtained by solid state reaction, Mater. Sci. Eng. B 207 (2016) 47–55.

DOI: 10.1016/j.mseb.2016.02.003

Google Scholar

[33] A. Xia, Magnetic properties of sintered SrFe12O19-CoFe2O4 nanocomposites with exchange coupling, J. Alloys Compd. 653 (2015) 108–116.

DOI: 10.1016/j.jallcom.2015.08.252

Google Scholar

[34] A. Poorbafrani, H. Salamati, and P. Kameli, Exchange spring behavior in Co0.6Zn0.4Fe2O4/SrFe10.5O16.75 nanocomposites, Ceram. Int. 41 (2015) 1603–1608.

DOI: 10.1016/j.ceramint.2014.09.097

Google Scholar