Low-Power Operating Aluminum Nitride Nanowire-Film Ultraviolet Photodetector

Article Preview

Abstract:

This work presents the fabrication and testing of a cost-effective, low power consuming, high sensitivity aluminum nitride nanowire-film-based ultraviolet photodetector. Time-dependent dynamics of photocurrent rise and decay have been investigated with varying applied bias ranging from 1 V to 20 V by periodical exposures to 254 nm ultraviolet light. The device shows stable and repeatable photocurrent cycles at low bias voltage of 1V indicating the sensitivity and low power operating capability. Furthermore, the photocurrent increases as the bias voltage increases such that the photocurrent at 20 V is approximately seventeen times larger than that of at 1 V. Despite the relatively long device length, the device reveals a quick response with a rise time of 270 ms. Moreover, the responsivity of the photodetector has been determined as 3.78 mA/W and 0.201 mA/W at 20 V and 1 V, respectively. This study demonstrates the potential of aluminum nitride nanowires for applications in next generation, low power consumption nanoscale optoelectronic devices in advanced communication, flame detection, air purification, ozone sensing, leak detection and other space monitoring.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-34

Citation:

Online since:

July 2022

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Premi, S. Wallisch, C. M. Mano, A. B. Weiner, A. Bacchiocchi, K. Wakamatsu, E. J. H. Bechara, R. Halaban, T. Douki, D. E. Brash, Chemical excitation of melanin derivatives induces DNA photoproducts long after UV exposure, Science 347 (2015) 842-847.

DOI: 10.1126/science.1256022

Google Scholar

[2] H. Chen, K. Liu, L. Hu, A. A. Al-Ghamdi, X. Fang, New concept ultraviolet photodetectors, Mater. Today 18 (2015) 493-502.

DOI: 10.1016/j.mattod.2015.06.001

Google Scholar

[3] Y. Zou, Y. Zhang, Y. Hu, H. Gu, Ultraviolet Detectors Based on Wide Bandgap Semiconductor Nanowire: A Review, Sensors 18 (2018) (2072).

DOI: 10.3390/s18072072

Google Scholar

[4] E. Monroy, F. Omnés, F. Calle, Wide-bandgap semiconductor ultraviolet photodetectors, Semicond. Sci. Technol. 18 (2003) R33-R51.

DOI: 10.1088/0268-1242/18/4/201

Google Scholar

[5] E. Munoz, (Al,In,Ga)N-based photodetectors. Some materials issues, Phys. Stat. Sol. 244 (2007) 2859-2877.

DOI: 10.1002/pssb.200675618

Google Scholar

[6] L. Peng, L.F Hu, X. Fang, Low-Dimensional Nanostructure Ultraviolet Photodetectors, Adv. Mater. 25 (2013) 5321-5328.

DOI: 10.1002/adma.201301802

Google Scholar

[7] Y. Li, X. Dong, C. Cheng, X. Zhou, P. Zhang, J. Gao, H. Zhang, Fabrication of ZnO nanorod array-based photodetector with high sensitivity, Physica B 404 (2009) 4282-4285.

DOI: 10.1016/j.physb.2009.08.011

Google Scholar

[8] X. Fang, Y. Bando, M. Liao, U. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, D. Golberg, Single-Crystalline ZnS Nanobelts as Ultraviolet-Light Sensors, Adv. Mater. 21 (2009) 2034-2039.

DOI: 10.1002/adma.200802441

Google Scholar

[9] L.F. Hu, J. Yan, M.Y. Liao, L. Wu, X.S. Fang, Ultrahigh External Quantum Efficiency from Thin SnO2 Nanowire Ultraviolet Photodetectors, Small 7 (2011) 1012-1017.

DOI: 10.1002/smll.201002379

Google Scholar

[10] G. Yu, Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe, Wiley, New York (2001).

Google Scholar

[11] J. Zheng, Y. Yang, B. Yu, X. Song, X. Li, [0001] Oriented Aluminum Nitride One-Dimensional Nanostructures: Synthesis, Structure Evolution, and Electrical Properties, ACS Nano 2 (2008) 134-142.

DOI: 10.1021/nn700363t

Google Scholar

[12] Y. B. Tang, X. H. Bo, J. Xu, Y. L. Cao, Z. H. Chen, H. S. Song, C. P. Liu, T. F. Hung, W. J. Zhang, H. M. Cheng, I. Bello, S. T. Lee, C. S. Lee, Tunable p-type conductivity and transport properties of AlN nanowires via Mg doping, ACS Nano 5 (2011) 3591-3598.

DOI: 10.1021/nn200963k

Google Scholar

[13] F. Liu, L. Li, T. Guo, H. Gan, X. Mo, J. Chen, S. Deng, and N. Xu, Investigation on the photoconductive behaviors of an individual AlN nanowire under different excited lights, Nanoscale Res. Lett. 7 (2012) 454.

DOI: 10.1186/1556-276x-7-454

Google Scholar

[14] L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U. K. Gautam, A. Lugstein, Y. Koide, Y. Bando, D. Golberg, Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts, Nanoscale 3 (2011) 1120-1126.

DOI: 10.1039/c0nr00702a

Google Scholar

[15] M. Kuball, J.M. Hayes, A.D. Prins, N.W.A. van Uden, D.J. Dunstan, Y. Shi, and J. H. Edgar, Raman scattering studies on single-crystalline bulk AlN under high pressures, Appl. Phys. Lett. 78 (2001) 724.

DOI: 10.1063/1.1344567

Google Scholar

[16] K. Teker, Aluminium nitride nanowire array films for nanomanufacturing applications, Mat. Sci. and Tech. 31 (2015) 1832-1836.

DOI: 10.1179/1743284715y.0000000027

Google Scholar

[17] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2, Nat. Nanotech. 8 (2013) 497-501.

DOI: 10.1038/nnano.2013.100

Google Scholar

[18] A. Sharma, B. Bhattacharyya, A. K. Srivastava, T. D. Senguttuvan, S. Husale, High performance broadband photodetector using fabricated nanowires of bismuth selenide, Sci. Rep. 6 (2016) 19138.

DOI: 10.1038/srep19138

Google Scholar

[19] R. Calarco, M. Marso, T. Richter, A.I. Aykanat, R. Meijers, A.V. Hart, T. Stoica, H.Luth, Size-dependent photoconductivity in MBE-grown GaN nanowires, Nano Lett. 5 (2005) 981-984.

DOI: 10.1021/nl0500306

Google Scholar

[20] M. Meng, X. Wu, X. Ji, Z. Gan, L. Liu, J. Shen, P. K. Chu, Ultrahigh quantum efficiency photodetector and ultrafast reversible surface wettability transition of square In2O3 nanowires, Nano Res. 10 (2017) 2772-2781.

DOI: 10.1007/s12274-017-1481-y

Google Scholar

[21] A. J. Molina-Mendiza, A. Moya, R. Frisenda, S.A Svatek, P. Gant, S. Gonzalez-Abad, E. Antolin, N. Agraït, G. Rubio-Bollinger, D. P. de Lara, et al., Highly responsive UV-photodetectors based on single electrospun TiO2 nanofibres, J. Mater. Chem. C 4 (2016) 10707-10714.

DOI: 10.1039/c6tc02344d

Google Scholar

[22] C.H. Lin, H.C. Fu, B. Cheng et al., A flexible solar-blind 2D boron nitride nanopaper-based photodetector with high thermal resistance, npj 2D Mater. Appl. 2 (2018) 1-6.

DOI: 10.1038/s41699-018-0070-6

Google Scholar

[23] H. Yu, E. A. Azhar, T. Belagodu, S. Lim, S. Dey, ZnO nanowire based visible-transparent ultraviolet detectors on polymer substrates, J. Appl. Phys. 111 (2012) 10286.

DOI: 10.1063/1.4714698

Google Scholar

[24] E. Munoz, E. Monroy, J. L. Pau, F. Calle, F. Omnes, P. Gibart, III. Nitrides and UV Detection, J. Phys. Cond. Matter 13 (2001) 7115-7137.

DOI: 10.1088/0953-8984/13/32/316

Google Scholar

[25] N. Li, C.P. Ho, S. Zhu, Y.H. Fu, Y. Zhu, L.Y.T. Lee, Aluminium nitride integrated photonics: a review, Nanophotonics 10 (2021) 2347-2387.

DOI: 10.1515/nanoph-2021-0130

Google Scholar