[1]
S. Su, J.L. Li, L. Zhou, S. Wan, H.C. Bi, Q. Ma, L.T. Sun, Ultra-thin electro-spun PAN nanofiber membrane for high-efficient inhalable PM2. 5 particles filtration, J. Nano Res. 46 (2017) 73–81.
DOI: 10.4028/www.scientific.net/jnanor.46.73
Google Scholar
[2]
N.S. Abd Halim, M.D.H. Wirzal, S.M. Hizam, M.R. Bilad, N.A.H.M. Nordin, N.S. Sambudi, A.R.M. Yusoff, Recent development on electrospun nanofiber membrane for produced water treatment: A review. J. Environ. Chem. Eng. 9(1) (2021) 104613.
DOI: 10.1016/j.jece.2020.104613
Google Scholar
[3]
N.O. San, A. Celebioglu, Y. Tümtaş, T. Uyar, T. Tekinay, Reusable bacteria immobilized electrospun nanofibrous webs for decolorization of methylene blue dye in wastewater treatment, RSC Adv. 4(61) (2014) 32249–32255.
DOI: 10.1039/c4ra04250f
Google Scholar
[4]
Y. Zhai, K. Schilling, T. Wang, M. El Khatib, S. Vinogradov, E.B. Brown, X. Zhang, Spatiotemporal blood vessel specification at the osteogenesis and angiogenesis interface of biomimetic nanofiber-enabled bone tissue engineering, Biomaterials. 276 (2021) 121041.
DOI: 10.1016/j.biomaterials.2021.121041
Google Scholar
[5]
Y. Turanlı, F. Acartürk, Fabrication and characterization of budesonide loaded colon-specific nanofiber drug delivery systems using anionic and cationic polymethacrylate polymers, J. Drug. Deliv. Sci. Technol. 63 (2021) 102511.
DOI: 10.1016/j.jddst.2021.102511
Google Scholar
[6]
N. Bhardwaj, S.C. Kundu, Electrospinning: a fascinating fiber fabrication technique, Biotechnol. Adv. 28(3) (2010) 325-347.
DOI: 10.1016/j.biotechadv.2010.01.004
Google Scholar
[7]
C. Feng, K.C. Khulbe, T. Matsuura, S. Tabe, A.F. Ismail, Preparation and characterization of electro-spun nanofiber membranes and their possible applications in water treatment, Sep. Purif. Technol. 102 (2013) 118–135.
DOI: 10.1016/j.seppur.2012.09.037
Google Scholar
[8]
S. Tahazadeh, T. Mohammadi, M.A. Tofighy, S. Khanlari, H. Karimi, H.B.M. Emrooz, Development of cellulose acetate/metal-organic framework derived porous carbon adsorptive membrane for dye removal applications, J. Membr. Sci. 638 (2021) 119692.
DOI: 10.1016/j.memsci.2021.119692
Google Scholar
[9]
R. Pelegrini, P. Peralta-Zamora, A.R. De Andrade, J. Reyes, N. Durán, Electrochemically assisted photocatalytic degradation of reactive dyes, Appl. Catal. B Environ. 22 (1999) 83–90.
DOI: 10.1016/s0926-3373(99)00037-5
Google Scholar
[10]
Y.S. Al-Degs, M.I. El-Barghouthi, A.H. El-Sheikh, G.M. Walker, Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon, Dye. Pigment. 77 (2008) 16–23.
DOI: 10.1016/j.dyepig.2007.03.001
Google Scholar
[11]
V. Katheresan, J. Kansedo, S.Y. Lau, Efficiency of various recent wastewater dye removal methods: A review, J. Environ. Chem. Eng. 6 (2018) 4676–4697.
DOI: 10.1016/j.jece.2018.06.060
Google Scholar
[12]
M.A. Hassaan, A. El. Nemr, Health and environmental impacts of dyes: Mini Review, Am. J. Environ. Sci. Eng. 1 (2017) 64–67.
Google Scholar
[13]
V. Masindi, L.M. Khathutshelo, Environmental contamination by heavy metals, Intech. 38 (2012).
Google Scholar
[14]
Y. Zheng, W. Wang, D. Huang, A. Wang, Kapok fiber oriented-polyaniline nanofibers for efficient Cr(VI) removal, Chem. Eng. J. 191 (2012) 154–161.
DOI: 10.1016/j.cej.2012.02.088
Google Scholar
[15]
N.O. San Keskin, A. Celebioglu, O.F. Sarioglu, T. Uyar, T. Tekinay, Encapsulation of living bacteria in electrospun cyclodextrin ultrathin fibers for bioremediation of heavy metals and reactive dye from wastewater, Colloids Surf. B Biointerfaces. 161 (2018) 169–176.
DOI: 10.1016/j.colsurfb.2017.10.047
Google Scholar
[16]
L.M. Silva-Bedoya, M.S. Sánchez-Pinzón, G.E. Cadavid-Restrepo, C.X. Moreno-Herrera, Bacterial community analysis of an industrial wastewater treatment plant in Colombia with screening for lipid-degrading microorganisms, Microbiol. Res. 192 (2016) 313–325.
DOI: 10.1016/j.micres.2016.08.006
Google Scholar
[17]
J. Martins, L. Peixe, V. Vasconcelos, Cyanobacteria and bacteria co-occurrence in a wastewater treatment plant: Absence of allelopathic effects, Water Sci. Technol. 62 (2010) 1954–(1962).
DOI: 10.2166/wst.2010.551
Google Scholar
[18]
A.L. Amaral, M. Da Motta, M.N. Pons, H. Vivier, N. Roche, M. Mota, E.C. Ferreira, Survey of Protozoa and Metazoa populations in wastewater treatment plants by image analysis and discriminant analysis, Environmetrics. 15 (2004) 381–390.
DOI: 10.1002/env.652
Google Scholar
[19]
A. Hossain Molla, A. Fakhru'L-Razi, M. Zahangir Alam, Evaluation of solid-state bioconversion of domestic wastewater sludge as a promising environmental-friendly disposal technique, Water Res. 38 (2004) 4143–4152.
DOI: 10.1016/j.watres.2004.08.002
Google Scholar
[20]
D. Zamel, A.U. Khan, Bacterial immobilization on cellulose acetate based nanofibers for methylene blue removal from wastewater: Mini-review, Inorg. Chem. Commun. (2021) 108766.
DOI: 10.1016/j.inoche.2021.108766
Google Scholar
[21]
D. Zamel, A.H. Hassanin, R. Ellethy, G. Singer, A. Abdelmoneim, Novel bacteria-immobilized cellulose acetate/poly (ethylene oxide) nanofibrous membrane for wastewater treatment, Sci. Rep. 9(1) (2019) 1-11.
DOI: 10.1038/s41598-019-55265-w
Google Scholar
[22]
F. Tian, Y. Wang, G. Guo, K. Ding, F. Yang, H. Wang, Y. Cao, C. Liu, Enhanced azo dye biodegradation at high salinity by a halophilic bacterial consortium, Bioresour. Technol. 326 (2021), 124749.
DOI: 10.1016/j.biortech.2021.124749
Google Scholar
[23]
N.F. Abd Rani, K. Ahmad Kamil, F. Aris, N. Mohamed Yunus, N.A Zakaria, Atrazine-degrading bacteria for bioremediation strategy: A review, Biocatal. Biotransformation. (2021) 1-15.
DOI: 10.1080/10242422.2021.2000967
Google Scholar
[24]
N.O. San Keskin, A. Celebioglu, O.F. Sarioglu, A.D. Ozkan, T. Uyar, T. Tekinay, Removal of a reactive dye and hexavalent chromium by a reusable bacteria attached electrospun nanofibrous web, RSC Adv. 5 (2015) 86867–86874.
DOI: 10.1039/c5ra15601g
Google Scholar
[25]
O.F. Sarioglu, N.O. San Keskin, A. Celebioglu, T. Tekinay, T. Uyar, Bacteria immobilized electrospun polycaprolactone and polylactic acid fibrous webs for remediation of textile dyes in water, Chemosphere. 184 (2017) 393–399.
DOI: 10.1016/j.chemosphere.2017.06.020
Google Scholar
[26]
S. Asad, M.A. Amoozegar, A.A. Pourbabaee, M.N. Sarbolouki, S.M.M. Dastgheib, Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria, Bioresour. Technol. 98 (2007) 2082–(2088).
DOI: 10.1016/j.biortech.2006.08.020
Google Scholar
[27]
J. Guo, J. Zhou, D. Wang, C. Tian, P. Wang, M.S. Uddin, A novel moderately halophilic bacterium for decolorizing azo dye under high salt condition, Biodegradation. 19 (2008)15–19.
DOI: 10.1007/s10532-007-9110-1
Google Scholar
[28]
B. Montañez-Barragán, J.L. Sanz-Martín, P. Gutiérrez-Macías, A. Morato-Cerro, R. Rodríguez-Vázquez, B.E. Barragán-Huerta, Azo dyes decolorization under high alkalinity and salinity conditions by Halomonas sp. in batch and packed bed reactor, Extremophiles. 24 (2) (2020) 239-247.
DOI: 10.1007/s00792-019-01149-w
Google Scholar
[29]
B. Kokabian, B. Bonakdarpour, S. Fazel S, The effect of salt on the performance and characteristics of a combined anaerobic-aerobic biological process for the treatment of synthetic wastewaters containing Reactive Black 5, Chem. Eng. J. 221 (2013) 363-372.
DOI: 10.1016/j.cej.2013.01.101
Google Scholar
[30]
M.X. Hu, J.N. Li, Q. Guo, Y.Q. Zhu, H.M. Niu, Probiotics biofilm-integrated electrospun nanofiber membranes: a new starter culture for fermented milk production, J. Agric. Food Chem. 67(11) (2019) 3198-3208.
DOI: 10.1021/acs.jafc.8b05024
Google Scholar
[31]
M. Narayani, K.V. Shetty, Chromium-resistant bacteria and their environmental condition for hexavalent chromium removal: A review, Crit. Rev. Environ. Sci. Technol. 43 (2013) 955–1009.
DOI: 10.1080/10643389.2011.627022
Google Scholar
[32]
S. Kanamarlapudi, V.K. Chintalpudi, S. Muddada, Application of biosorption for removal of heavy metals from wastewater, Intech. 32 (2018) 69–116.
DOI: 10.5772/intechopen.77315
Google Scholar
[33]
S. Basu, M. Dasgupta, B. Chakraborty, Removal of Chromium (VI) by Bacillus subtilis isolated from East Calcutta Wetlands, West Bengal, India, Int. J. Biosci. Biochem. Bioinforma. 4 (2014) 7–10.
DOI: 10.7763/ijbbb.2014.v4.300
Google Scholar
[34]
O. Lefebvre, R. Moletta, Treatment of organic pollution in industrial saline wastewater: a literature review, Water Res. 40 (20) (2006) 3671-3682.
DOI: 10.1016/j.watres.2006.08.027
Google Scholar
[35]
P.C. Abhay, P. Rawat, D. Singh, Isolation of alkaliphilic bacterium Citricoccus alkalitolerans CSB1: An efficient biosorbent for bioremediation of tannery waste water, Cell. Mol. Biol. 62 (2016) 135.
Google Scholar