Reusable Halophilic Bacteria Attached Cellulose Acetate Nanofiber Webs for Removal of Cr (VI) and Reactive Dye

Article Preview

Abstract:

Hexavalent Chromium (Cr (VI)) and Reactive Blue (RB) removal efficiencies of halotolerant Citricoccus sp. were examined for different parameters such as initial pH, contact time, temperature static/shaking, NaCl concentration, and different pollutant concentrations. In this research, Citricoccus sp. attached cellulose acetate (CA) nanofiber webs (NfW) were produced by electrospinning method to improve the removal yield even further. The Cr (VI) removal yield was calculated as 11.39 ± 0.002% for the pristine CA-NfW, whereas it was 39.19 ± 0.43% for bacteria attached CA-NfW. Therefore, the Cr (VI) removal capacities of bacteria attached CA-NfW were significantly higher than that of pristine CA-NfW. In addition, reusability tests revealed that bacteria attached CA-NfW can be used at least three successive times in decolorization and Cr (VI) removal steps. The decolorization rate of the RB and Cr (VI) removal yield was found to be 31.5 ± 0.2% and 5.63 ± 0.30%, respectively. These results are promising and therefore suggest that bacteria attached CA-NfW could be applicable for the removal of wastewater containing Cr (VI) and reactive dye due to their versatility and reusability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-45

Citation:

Online since:

July 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Su, J.L. Li, L. Zhou, S. Wan, H.C. Bi, Q. Ma, L.T. Sun, Ultra-thin electro-spun PAN nanofiber membrane for high-efficient inhalable PM2. 5 particles filtration, J. Nano Res. 46 (2017) 73–81.

DOI: 10.4028/www.scientific.net/jnanor.46.73

Google Scholar

[2] N.S. Abd Halim, M.D.H. Wirzal, S.M. Hizam, M.R. Bilad, N.A.H.M. Nordin, N.S. Sambudi, A.R.M. Yusoff, Recent development on electrospun nanofiber membrane for produced water treatment: A review. J. Environ. Chem. Eng. 9(1) (2021) 104613.

DOI: 10.1016/j.jece.2020.104613

Google Scholar

[3] N.O. San, A. Celebioglu, Y. Tümtaş, T. Uyar, T. Tekinay, Reusable bacteria immobilized electrospun nanofibrous webs for decolorization of methylene blue dye in wastewater treatment, RSC Adv. 4(61) (2014) 32249–32255.

DOI: 10.1039/c4ra04250f

Google Scholar

[4] Y. Zhai, K. Schilling, T. Wang, M. El Khatib, S. Vinogradov, E.B. Brown, X. Zhang, Spatiotemporal blood vessel specification at the osteogenesis and angiogenesis interface of biomimetic nanofiber-enabled bone tissue engineering, Biomaterials. 276 (2021) 121041.

DOI: 10.1016/j.biomaterials.2021.121041

Google Scholar

[5] Y. Turanlı, F. Acartürk, Fabrication and characterization of budesonide loaded colon-specific nanofiber drug delivery systems using anionic and cationic polymethacrylate polymers, J. Drug. Deliv. Sci. Technol. 63 (2021) 102511.

DOI: 10.1016/j.jddst.2021.102511

Google Scholar

[6] N. Bhardwaj, S.C. Kundu, Electrospinning: a fascinating fiber fabrication technique, Biotechnol. Adv. 28(3) (2010) 325-347.

DOI: 10.1016/j.biotechadv.2010.01.004

Google Scholar

[7] C. Feng, K.C. Khulbe, T. Matsuura, S. Tabe, A.F. Ismail, Preparation and characterization of electro-spun nanofiber membranes and their possible applications in water treatment, Sep. Purif. Technol. 102 (2013) 118–135.

DOI: 10.1016/j.seppur.2012.09.037

Google Scholar

[8] S. Tahazadeh, T. Mohammadi, M.A. Tofighy, S. Khanlari, H. Karimi, H.B.M. Emrooz, Development of cellulose acetate/metal-organic framework derived porous carbon adsorptive membrane for dye removal applications, J. Membr. Sci. 638 (2021) 119692.

DOI: 10.1016/j.memsci.2021.119692

Google Scholar

[9] R. Pelegrini, P. Peralta-Zamora, A.R. De Andrade, J. Reyes, N. Durán, Electrochemically assisted photocatalytic degradation of reactive dyes, Appl. Catal. B Environ. 22 (1999) 83–90.

DOI: 10.1016/s0926-3373(99)00037-5

Google Scholar

[10] Y.S. Al-Degs, M.I. El-Barghouthi, A.H. El-Sheikh, G.M. Walker, Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon, Dye. Pigment. 77 (2008) 16–23.

DOI: 10.1016/j.dyepig.2007.03.001

Google Scholar

[11] V. Katheresan, J. Kansedo, S.Y. Lau, Efficiency of various recent wastewater dye removal methods: A review, J. Environ. Chem. Eng. 6 (2018) 4676–4697.

DOI: 10.1016/j.jece.2018.06.060

Google Scholar

[12] M.A. Hassaan, A. El. Nemr, Health and environmental impacts of dyes: Mini Review, Am. J. Environ. Sci. Eng. 1 (2017) 64–67.

Google Scholar

[13] V. Masindi, L.M. Khathutshelo, Environmental contamination by heavy metals, Intech. 38 (2012).

Google Scholar

[14] Y. Zheng, W. Wang, D. Huang, A. Wang, Kapok fiber oriented-polyaniline nanofibers for efficient Cr(VI) removal, Chem. Eng. J. 191 (2012) 154–161.

DOI: 10.1016/j.cej.2012.02.088

Google Scholar

[15] N.O. San Keskin, A. Celebioglu, O.F. Sarioglu, T. Uyar, T. Tekinay, Encapsulation of living bacteria in electrospun cyclodextrin ultrathin fibers for bioremediation of heavy metals and reactive dye from wastewater, Colloids Surf. B Biointerfaces. 161 (2018) 169–176.

DOI: 10.1016/j.colsurfb.2017.10.047

Google Scholar

[16] L.M. Silva-Bedoya, M.S. Sánchez-Pinzón, G.E. Cadavid-Restrepo, C.X. Moreno-Herrera, Bacterial community analysis of an industrial wastewater treatment plant in Colombia with screening for lipid-degrading microorganisms, Microbiol. Res. 192 (2016) 313–325.

DOI: 10.1016/j.micres.2016.08.006

Google Scholar

[17] J. Martins, L. Peixe, V. Vasconcelos, Cyanobacteria and bacteria co-occurrence in a wastewater treatment plant: Absence of allelopathic effects, Water Sci. Technol. 62 (2010) 1954–(1962).

DOI: 10.2166/wst.2010.551

Google Scholar

[18] A.L. Amaral, M. Da Motta, M.N. Pons, H. Vivier, N. Roche, M. Mota, E.C. Ferreira, Survey of Protozoa and Metazoa populations in wastewater treatment plants by image analysis and discriminant analysis, Environmetrics. 15 (2004) 381–390.

DOI: 10.1002/env.652

Google Scholar

[19] A. Hossain Molla, A. Fakhru'L-Razi, M. Zahangir Alam, Evaluation of solid-state bioconversion of domestic wastewater sludge as a promising environmental-friendly disposal technique, Water Res. 38 (2004) 4143–4152.

DOI: 10.1016/j.watres.2004.08.002

Google Scholar

[20] D. Zamel, A.U. Khan, Bacterial immobilization on cellulose acetate based nanofibers for methylene blue removal from wastewater: Mini-review, Inorg. Chem. Commun. (2021) 108766.

DOI: 10.1016/j.inoche.2021.108766

Google Scholar

[21] D. Zamel, A.H. Hassanin, R. Ellethy, G. Singer, A. Abdelmoneim, Novel bacteria-immobilized cellulose acetate/poly (ethylene oxide) nanofibrous membrane for wastewater treatment, Sci. Rep. 9(1) (2019) 1-11.

DOI: 10.1038/s41598-019-55265-w

Google Scholar

[22] F. Tian, Y. Wang, G. Guo, K. Ding, F. Yang, H. Wang, Y. Cao, C. Liu, Enhanced azo dye biodegradation at high salinity by a halophilic bacterial consortium, Bioresour. Technol. 326 (2021), 124749.

DOI: 10.1016/j.biortech.2021.124749

Google Scholar

[23] N.F. Abd Rani, K. Ahmad Kamil, F. Aris, N. Mohamed Yunus, N.A Zakaria, Atrazine-degrading bacteria for bioremediation strategy: A review, Biocatal. Biotransformation. (2021) 1-15.

DOI: 10.1080/10242422.2021.2000967

Google Scholar

[24] N.O. San Keskin, A. Celebioglu, O.F. Sarioglu, A.D. Ozkan, T. Uyar, T. Tekinay, Removal of a reactive dye and hexavalent chromium by a reusable bacteria attached electrospun nanofibrous web, RSC Adv. 5 (2015) 86867–86874.

DOI: 10.1039/c5ra15601g

Google Scholar

[25] O.F. Sarioglu, N.O. San Keskin, A. Celebioglu, T. Tekinay, T. Uyar, Bacteria immobilized electrospun polycaprolactone and polylactic acid fibrous webs for remediation of textile dyes in water, Chemosphere. 184 (2017) 393–399.

DOI: 10.1016/j.chemosphere.2017.06.020

Google Scholar

[26] S. Asad, M.A. Amoozegar, A.A. Pourbabaee, M.N. Sarbolouki, S.M.M. Dastgheib, Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria, Bioresour. Technol. 98 (2007) 2082–(2088).

DOI: 10.1016/j.biortech.2006.08.020

Google Scholar

[27] J. Guo, J. Zhou, D. Wang, C. Tian, P. Wang, M.S. Uddin, A novel moderately halophilic bacterium for decolorizing azo dye under high salt condition, Biodegradation. 19 (2008)15–19.

DOI: 10.1007/s10532-007-9110-1

Google Scholar

[28] B. Montañez-Barragán, J.L. Sanz-Martín, P. Gutiérrez-Macías, A. Morato-Cerro, R. Rodríguez-Vázquez, B.E. Barragán-Huerta, Azo dyes decolorization under high alkalinity and salinity conditions by Halomonas sp. in batch and packed bed reactor, Extremophiles. 24 (2) (2020) 239-247.

DOI: 10.1007/s00792-019-01149-w

Google Scholar

[29] B. Kokabian, B. Bonakdarpour, S. Fazel S, The effect of salt on the performance and characteristics of a combined anaerobic-aerobic biological process for the treatment of synthetic wastewaters containing Reactive Black 5, Chem. Eng. J. 221 (2013) 363-372.

DOI: 10.1016/j.cej.2013.01.101

Google Scholar

[30] M.X. Hu, J.N. Li, Q. Guo, Y.Q. Zhu, H.M. Niu, Probiotics biofilm-integrated electrospun nanofiber membranes: a new starter culture for fermented milk production, J. Agric. Food Chem. 67(11) (2019) 3198-3208.

DOI: 10.1021/acs.jafc.8b05024

Google Scholar

[31] M. Narayani, K.V. Shetty, Chromium-resistant bacteria and their environmental condition for hexavalent chromium removal: A review, Crit. Rev. Environ. Sci. Technol. 43 (2013) 955–1009.

DOI: 10.1080/10643389.2011.627022

Google Scholar

[32] S. Kanamarlapudi, V.K. Chintalpudi, S. Muddada, Application of biosorption for removal of heavy metals from wastewater, Intech. 32 (2018) 69–116.

DOI: 10.5772/intechopen.77315

Google Scholar

[33] S. Basu, M. Dasgupta, B. Chakraborty, Removal of Chromium (VI) by Bacillus subtilis isolated from East Calcutta Wetlands, West Bengal, India, Int. J. Biosci. Biochem. Bioinforma. 4 (2014) 7–10.

DOI: 10.7763/ijbbb.2014.v4.300

Google Scholar

[34] O. Lefebvre, R. Moletta, Treatment of organic pollution in industrial saline wastewater: a literature review, Water Res. 40 (20) (2006) 3671-3682.

DOI: 10.1016/j.watres.2006.08.027

Google Scholar

[35] P.C. Abhay, P. Rawat, D. Singh, Isolation of alkaliphilic bacterium Citricoccus alkalitolerans CSB1: An efficient biosorbent for bioremediation of tannery waste water, Cell. Mol. Biol. 62 (2016) 135.

Google Scholar