[1]
M. J. Allen, V. C. Tung, R. B. Kaner, Honeycomb Carbon: A Review of Graphene, Chemical Reviews 110 (1) (2010) 132-145.
DOI: 10.1021/cr900070d
Google Scholar
[2]
A. K. Geim, K. S. Novoselov, The rise of graphene, Nat. Mater. 6 (3) (2007) 183-191.
Google Scholar
[3]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (5696) (2004) 666-669.
DOI: 10.1126/science.1102896
Google Scholar
[4]
C. Zhu, S. Guo, Y. Fang, S. Dong, Reducing Sugar: New Functional Molecules for the Green Synthesis of Graphene Nanosheets, ACS Nano 4 (4) (2010) 2429-2437.
DOI: 10.1021/nn1002387
Google Scholar
[5]
B. F. Machado, P. Serp, Graphene-based materials for catalysis, Catalysis Science & Technology 2 (1) (2012) 54-75.
Google Scholar
[6]
V. B. Mohan, K.-T. Lau, D. Hui, D. Bhattacharyya, Graphene-based materials and their composites: A review on production, applications and product limitations, Composites Part B: Engineering 142 ((2018) 200-220.
DOI: 10.1016/j.compositesb.2018.01.013
Google Scholar
[7]
A. G. Olabi, M. A. Abdelkareem, T. Wilberforce, E. T. Sayed, Application of graphene in energy storage device – A review, Renewable and Sustainable Energy Reviews 135 (C) (2021) S1364032120303178.
DOI: 10.1016/j.rser.2020.110026
Google Scholar
[8]
A. K. Sood, I. Lund, Y. R. Puri, H. Efstathiadis, P. Haldar, N. K. Dhar, J. Lewis, M. Dubey, E. Zakar, P. Wijewarnasuriya, Review of graphene technology and its applications for electronic devices, Graphene—New Trends and Developments (2015).
DOI: 10.5772/61316
Google Scholar
[9]
A. Malas Rubber nanocomposites with graphene as the nanofiller. In, (2017).
Google Scholar
[10]
N. Morimoto, T. Kubo, Y. Nishina, Tailoring the Oxygen Content of Graphite and Reduced Graphene Oxide for Specific Applications, Scientific Reports 6 (1) (2016) 21715.
DOI: 10.1038/srep21715
Google Scholar
[11]
W. S. Hummers, R. E. Offeman, PREPARATION OF GRAPHITIC OXIDE, J. Am. Chem. Soc. 80 (6) (1958) 1339-1339.
DOI: 10.1021/ja01539a017
Google Scholar
[12]
S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Graphene-based composite materials, Nature 442 (7100) (2006) 282-286.
DOI: 10.1038/nature04969
Google Scholar
[13]
D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, J. M. Tour, Improved Synthesis of Graphene Oxide, ACS Nano 4 (8) (2010) 4806-4814.
DOI: 10.1021/nn1006368
Google Scholar
[14]
K. Erickson, R. Erni, Z. Lee, N. Alem, W. Gannett, A. Zettl, Determination of the Local Chemical Structure of Graphene Oxide and Reduced Graphene Oxide, Advanced Materials 22 (40) (2010) 4467-4472.
DOI: 10.1002/adma.201000732
Google Scholar
[15]
K. K. H. De Silva, H.-H. Huang, M. Yoshimura, Progress of reduction of graphene oxide by ascorbic acid, Applied Surface Science 447 ((2018) 338-346.
DOI: 10.1016/j.apsusc.2018.03.243
Google Scholar
[16]
M. Kaur, K. Pal, An investigation for hydrogen storage capability of zirconia-reduced graphene oxide nanocomposite, International Journal of Hydrogen Energy 41 (47) (2016) 21861-21869.
DOI: 10.1016/j.ijhydene.2016.09.129
Google Scholar
[17]
R. S. Rajaura, S. Srivastava, V. Sharma, P. K. Sharma, C. Lal, M. Singh, H. S. Palsania, Y. K. Vijay, Role of interlayer spacing and functional group on the hydrogen storage properties of graphene oxide and reduced graphene oxide, International Journal of Hydrogen Energy 41 (22) (2016) 9454-9461.
DOI: 10.1016/j.ijhydene.2016.04.115
Google Scholar
[18]
X. Zhang, K. Li, H. Li, J. Lu, Q. Fu, Y. Chu, Graphene nanosheets synthesis via chemical reduction of graphene oxide using sodium acetate trihydrate solution, Synthetic Metals 193 ((2014) 132-138.
DOI: 10.1016/j.synthmet.2014.04.007
Google Scholar
[19]
F. Cataldo, O. Ursini, G. Angelini, Graphite Oxide and Graphene Nanoribbons Reduction with Hydrogen Iodide, Fullerenes, Nanotubes and Carbon Nanostructures 19 (5) (2011) 461-468.
DOI: 10.1080/1536383x.2010.481064
Google Scholar
[20]
S. Abdolhosseinzadeh, H. Asgharzadeh, H. Seop Kim, Fast and fully-scalable synthesis of reduced graphene oxide, Scientific Reports 5 (1) (2015) 10160.
DOI: 10.1038/srep10160
Google Scholar
[21]
M. J. Fernández-Merino, L. Guardia, J. I. Paredes, S. Villar-Rodil, P. Solís Fernández, A. Martínez-Alonso, J. TascóN, Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions, Journal of Physical Chemistry C - J PHYS CHEM C 114 ((2010) 6426-6432.
DOI: 10.1021/jp100603h
Google Scholar
[22]
C.-Y. Ho, H.-W. Wang, Characteristics of thermally reduced graphene oxide and applied for dye-sensitized solar cell counter electrode, Applied Surface Science 357 ((2015) 147-154.
DOI: 10.1016/j.apsusc.2015.09.016
Google Scholar
[23]
A. Klechikov, G. Mercier, T. Sharifi, I. A. Baburin, G. Seifert, A. V. Talyzin, Hydrogen storage in high surface area graphene scaffolds, Chemical Communications 51 (83) (2015) 15280-15283.
DOI: 10.1039/c5cc05474e
Google Scholar
[24]
A. Ladron-De-Guevara, A. Bosca, J. Pedros, E. Climent-Pascual, A. De Andres, F. Calle, J. Martinez, Reduced graphene oxide/polyaniline electrochemical supercapacitors fabricated by laser, Applied Surface Science 467 ((2019) 691-697.
DOI: 10.1016/j.apsusc.2018.10.194
Google Scholar
[25]
C. Nethravathi, M. Rajamathi, Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide, Carbon 46 ((2008) 1994-1998.
DOI: 10.1016/j.carbon.2008.08.013
Google Scholar
[26]
M. M. M. Alyobi, C. Barnett, R. J. Cobley Effects of Thermal Annealing on the Properties of Mechanically Exfoliated Suspended and On-Substrate Few-Layer Graphene. In, (2017).
DOI: 10.3390/cryst7110349
Google Scholar
[27]
M. P. Lavin-Lopez, A. Paton-Carrero, L. Sanchez-Silva, J. L. Valverde, A. Romero, Influence of the reduction strategy in the synthesis of reduced graphene oxide, Advanced Powder Technology 28 (12) (2017) 3195-3203.
DOI: 10.1016/j.apt.2017.09.032
Google Scholar
[28]
Y. Ahn, J. Kim, S. Ganorkar, Y.-H. Kim, S.-I. Kim, Thermal annealing of graphene to remove polymer residues, Materials Express 6 (1) (2016) 69-76.
DOI: 10.1166/mex.2016.1272
Google Scholar
[29]
F. Han, S. Yang, W. Jing, K. Jiang, Z. Jiang, H. Liu, L. Li, Surface plasmon enhanced photoluminescence of ZnO nanorods by capping reduced graphene oxide sheets, Opt. Express 22 (10) (2014) 11436-11445.
DOI: 10.1364/oe.22.011436
Google Scholar
[30]
J. Jagiełło, A. Chlanda, M. Baran, M. Gwiazda, L. Lipińska, Synthesis and Characterization of Graphene Oxide and Reduced Graphene Oxide Composites with Inorganic Nanoparticles for Biomedical Applications, Nanomaterials (Basel) 10 (9) (2020) 1846.
DOI: 10.3390/nano10091846
Google Scholar
[31]
X. Gao, J. Jang, S. Nagase, Hydrazine and Thermal Reduction of Graphene Oxide: Reaction Mechanisms, Product Structures, and Reaction Design, The Journal of Physical Chemistry C 114 (2) (2010) 832-842.
DOI: 10.1021/jp909284g
Google Scholar
[32]
A. Kaushal, S. K. Dhawan, V. Singh, Determination of crystallite size, number of graphene layers and defect density of graphene oxide (GO) and reduced graphene oxide (RGO), AIP Conference Proceedings 2115 (1) (2019) 030106.
DOI: 10.1063/1.5112945
Google Scholar
[33]
A. C. Ferrari, D. M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nature Nanotechnology 8 (4) (2013) 235-246.
DOI: 10.1038/nnano.2013.46
Google Scholar
[34]
D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, R. S. Ruoff, Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy, Carbon 47 (1) (2009) 145-152.
DOI: 10.1016/j.carbon.2008.09.045
Google Scholar
[35]
R. Arul, R. N. Oosterbeek, J. Robertson, G. Xu, J. Jin, M. C. Simpson, The mechanism of direct laser writing of graphene features into graphene oxide films involves photoreduction and thermally assisted structural rearrangement, Carbon 99 ((2016) 423-431.
DOI: 10.1016/j.carbon.2015.12.038
Google Scholar
[36]
D. Lopez-Diaz, M. Lopez Holgado, J. L. Garcia-Fierro, M. Mercedes Velazquez, Evolution of the Raman Spectrum with the Chemical Composition of Graphene Oxide, Journal of Physical Chemistry C 121 (37) (2017) 20489-20497.
DOI: 10.1021/acs.jpcc.7b06236
Google Scholar
[37]
R. Ikram, B. M. Jan, W. Ahmad, An overview of industrial scalable production of graphene oxide and analytical approaches for synthesis and characterization, Journal of Materials Research and Technology 9 (5) (2020) 11587-11610.
DOI: 10.1016/j.jmrt.2020.08.050
Google Scholar