Enhancing Dispersion of Yttria-Stabilized Tetragonal Zirconia Nanopowders with Microwave Solvothermal Synthesis

Article Preview

Abstract:

Yttria stabilized tetragonal zirconia (Y0.08Zr0.94O2, YSZ) nanopowders were successfully synthesized by microwave solvothermal method (MSM). The synthesizing temperature, holding time and mineralizer concentration were optimized. The crystallization and particle distribution of as-prepared YSZ nanopowders were identified by DSC/TG, XRD, FESEM, TEM, FTIR, DLS, and BET. The dispersion of YSZ nanopowders dried by different methods and modified by polyethyleneimine (PEI) was analyzed and discussed. The results show that the PEI modified samples have the best dispersion, and the dispersion of freeze-dried samples is better than that of traditional dried ones. The particle size of the PEI modified samples calculated from the surface area determined by BET is 15.7 nm, which is consistent with that determined by TEM (16.5 nm), but slightly smaller than that calculated by the Scherrer formula according to XRD (22.3 nm). This may be attributed to the different testing principles in these methods.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-96

Citation:

Online since:

July 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Farhikhteh, A. Maghsoudipour, B. Raissi, B. Mozaffari, Synthesis of high specific surface area YSZ (ZrO2–8Y2O3) nanocrystalline powder by modified polymerized complex method, J. Sol-Gel Sci. Technol. 49 (2008) 60–65.

DOI: 10.1007/s10971-008-1842-9

Google Scholar

[2] C. Duran, K. Sato, Y. Hotta, H. Göçmez, K. Watari, Ball milling assisted hydrothermal synthesis of ZrO2 nanopowders, Ceram. Int. 41 (2015) 5588-5593.

DOI: 10.1016/j.ceramint.2014.12.138

Google Scholar

[3] M.M. Latif, M.S. Showman, A.M. Ibrahim, M.M. Soliman, Optimizing the preparation parameters of nanocrystalline zirconia for catalytic applications. Acta Metall. Sin. (Engl. Lett.) 26 (2013) 565-573.

DOI: 10.1007/s40195-013-0008-0

Google Scholar

[4] Y.-W. Hsu, K.-H. Yang, K.-M. Chang, S.-W. Yeh, M.-C. Wang, Synthesis and crystallization behavior of 3mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanosized powders prepared using a simple co-precipitation process, J. Alloys Compd. 509 (2011) 6864-687.

DOI: 10.1016/j.jallcom.2011.03.162

Google Scholar

[5] N.Y. Fedorenko, S.V. Mjakin, T.V. Khamova, M.V. Kalinina, O.A. Shilova, Relationship among the composition, synthesis conditions, and surface acid-basic properties of xerogel particles based on zirconium dioxide, Ceram. Int. 48 (2022) 6245-6249.

DOI: 10.1016/j.ceramint.2021.11.165

Google Scholar

[6] A.R. Supandi, N. Nunotani, N. Imanaka, Particle size effect of ZrO2 supports on catalytic liquid-phase oxidation of phenol over Pt/CeO2-ZrO2-Bi2O3/ZrO2 catalysts, J. Asian Ceram. Soc. 8 (2020) 745-752.

DOI: 10.1080/21870764.2020.1786238

Google Scholar

[7] N. Li, D. An, Z. Yi, N. Yu, Z. Xie, Synthesis of 1Y6Ce–ZrO2 nanoparticles with excellent sintering performance via novel Sol-Gel-Flux method, Ceram. Int. 48 (2022) 2637-2644.

DOI: 10.1016/j.ceramint.2021.10.047

Google Scholar

[8] Z. Huang, W. Han, Z. Feng, J. Qi, D. Wu, N. Wei, Z. Tang, Y. Zhang, J. Duan, T. Lu, The effects of precipitants on co-precipitation synthesis of yttria-stabilized zirconia nanocrystalline powders, J. Sol-Gel Sci. Technol. 90 (2019) 359-368.

DOI: 10.1007/s10971-019-04947-y

Google Scholar

[9] R. Pazhani, H. Padma Kumar, A. Varghese, A. Moses Ezhil Raj, S. Solomon, J. K. Thomas, Synthesis, vacuum sintering and dielectric characterization of zirconia (t-ZrO2) nanopowder, J. Alloys Compd. 509 (2011) 6819-6823.

DOI: 10.1016/j.jallcom.2011.03.089

Google Scholar

[10] K. Tõnsuaadu, A. Zalga, A. Beganskiene, A. Kareiva, Thermoanalytical study of the YSZ precursors prepared by aqueous sol–gel synthesis route, J. Therm. Anal. Calorim. 110 (2012) 77-83.

DOI: 10.1007/s10973-011-2184-3

Google Scholar

[11] S.-H. Ri, S.-O. Pak, H.-S. Kwak, Y. Ri, S.-J. Im, Improving dispersion stability of zirconium hydroxide sol for preparing nano zirconia by the reverse precipitation, J. Disper. Sci. Technol. 40 (2018) 679-685.

DOI: 10.1080/01932691.2018.1478304

Google Scholar

[12] H. Shokry, M. Elkady, H. Hamad, Synthesis and Characterization of Stabilized Tetragonal Nano Zirconia by Precipitation Method, J. Nano Res. 56 (2019) 142-151.

DOI: 10.4028/www.scientific.net/jnanor.56.142

Google Scholar

[13] S. Zinatloo-Ajabshir, M. Salavati-Niasari, Preparation of nanocrystalline cubic ZrO2 with different shapes via a simple precipitation approach, J. Mater. Sci. Mater. Electron. 27 (2015) 3918-3928.

DOI: 10.1007/s10854-015-4243-1

Google Scholar

[14] H. Reveron, H. Vesteghem, Synthesis and thermal behaviour of nanostructured ZrO2 powders obtained under hydrothermal conditions, J. Nanosci. Nanotechnol. 5 (2005) 1643-1650.

DOI: 10.1166/jnn.2005.179

Google Scholar

[15] S.A. Khan, Z. Fu, S.S. Rehman, M. Asif, W. Wang, H. Wang, Study of template-free synthesis hierarchical m-ZrO2 nanorods by hydrothermal method, Powder Technol. 256 (2014) 71-74.

DOI: 10.1016/j.powtec.2014.02.012

Google Scholar

[16] M. Taguchi, T. Nakane, A. Matsushita, Y. Sakka, T. Uchikoshi, T. Funazukuri, T. Naka, One-pot synthesis of monoclinic ZrO2 nanocrystals under subcritical hydrothermal conditions, J. Supercrit. Fluids 85 (2014) 57-61.

DOI: 10.1016/j.supflu.2013.11.001

Google Scholar

[17] A. Yurdakul, H. Gocmez, One-step hydrothermal synthesis of yttria-stabilized tetragonal zirconia polycrystalline nanopowders for blue-colored zirconia-cobalt aluminate spinel composite ceramics, Ceram. Int. 45 (2019) 5398-5406.

DOI: 10.1016/j.ceramint.2018.11.240

Google Scholar

[18] C.V. Reddy, B. Babu, I.N. Reddy, J. Shim, Synthesis and characterization of pure tetragonal ZrO2 nanoparticles with enhanced photocatalytic activity, Ceram. Int. 44 (2018) 6940-6948.

DOI: 10.1016/j.ceramint.2018.01.123

Google Scholar

[19] I. Gonzalo-Juan, B. Ferrari, M.T. Colomer, M.A. Rodriguez, A.J. Sanchez-Herencia, P.Y. Koh, A.S. Teja, Synthesis and dispersion of yttria-stabilized zirconia (YSZ) nanoparticles in supercritical water, Mater. Chem. Phys. 134 (2012) 451-458.

DOI: 10.1016/j.matchemphys.2012.03.016

Google Scholar

[20] L. Bai, K. Zhu, L. Su, J. Qiu, H. Ji, Synthesis of (K, Na)NbO3 particles by high temperature mixing method under hydrothermal conditions, Mater. Lett. 64 (2010) 77-79.

DOI: 10.1016/j.matlet.2009.10.013

Google Scholar

[21] M. Guo, G. Wang, Y. Zhao, H. Li, K. Tang, Y. Zhao, K. Burgess, Preparation of Nano-ZrO2 powder via a microwave-assisted hydrothermal method, Ceram. Int. 47 (2021) 12425-12432.

DOI: 10.1016/j.ceramint.2021.01.099

Google Scholar

[22] A.K. Singh, U.T. Nakate, Microwave synthesis, characterization, and photoluminescence properties of nanocrystalline zirconia, Scientific World J. 2014 (2014) 349457.

DOI: 10.1155/2014/349457

Google Scholar

[23] F. Sayılkan, M. Asiltürk, E. Burunkaya, E. Arpaç, Hydrothermal synthesis and characterization of nanocrystalline ZrO2 and surface modification with 2-acetoacetoxyethyl methacrylate, J. Sol-Gel Sci. Technol. 51 (2009) 182-189.

DOI: 10.1007/s10971-009-1970-x

Google Scholar

[24] J. Sun, J. Binner, J. Bai, Effect of surface treatment on the dispersion of nano zirconia particles in non-aqueous suspensions for stereolithography, J. Eur. Ceram. Soc. 39 (2019) 1660-1667.

DOI: 10.1016/j.jeurceramsoc.2018.10.024

Google Scholar

[25] YZ. Ye, X. Qin, N. Lai, Q. Peng, X. Li, C. Li, Synthesis and performance of an acrylamide copolymer containing nano-ZrO2 as enhanced oil recovery chemical, J. Chem. 2013 (2013) 1-10.

DOI: 10.1155/2013/437309

Google Scholar

[26] G. D. Agli, G. Mascolo, Hydrothermal synthesis of ZrO2–Y2O3 solid solutions at low temperature, J. Eur. Ceram. Soc. 20 (2000) 139-145.

DOI: 10.1016/s0955-2219(99)00151-x

Google Scholar

[27] Z. Feng, J. Qi, Z. Huang, X. Xie, N. Wei, T. Lu, Optimization of the amount and molecular weight of dispersing agent PEG during the Co-precipitation preparation of nano-crystalline C-YSZ powder, J. Nanosci. Nanotechnol. 17 (2017) 2613-2619.

DOI: 10.1166/jnn.2017.12690

Google Scholar

[28] N. Garg, V.K. Mittal, S. Bera, A. Dasgupta, V. Sankaralingam, Preparation and characterization of tetragonal dominant nanocrystalline ZrO2 obtained via direct precipitation, Ceram. Int. 38 (2012) 2507-2512.

DOI: 10.1016/j.ceramint.2011.11.020

Google Scholar

[29] F. Q. Tang, Y. F. Zhang, J. K. Guo, Effect of dispersants on surface chemical properties of nano-zirconia suspensions, Ceram. Int. 26 (2000) 93-97.

Google Scholar

[30] S. X. Zhou, G. Garnweitner, M. Niederberger, M. Antonietti, Dispersion behavior of zirconia nanocrystals and their surface functionalization with vinyl group-containing ligands, J. Langmuir 23 (2007) 9178-9187.

DOI: 10.1021/la700837u

Google Scholar