[1]
S. Farhikhteh, A. Maghsoudipour, B. Raissi, B. Mozaffari, Synthesis of high specific surface area YSZ (ZrO2–8Y2O3) nanocrystalline powder by modified polymerized complex method, J. Sol-Gel Sci. Technol. 49 (2008) 60–65.
DOI: 10.1007/s10971-008-1842-9
Google Scholar
[2]
C. Duran, K. Sato, Y. Hotta, H. Göçmez, K. Watari, Ball milling assisted hydrothermal synthesis of ZrO2 nanopowders, Ceram. Int. 41 (2015) 5588-5593.
DOI: 10.1016/j.ceramint.2014.12.138
Google Scholar
[3]
M.M. Latif, M.S. Showman, A.M. Ibrahim, M.M. Soliman, Optimizing the preparation parameters of nanocrystalline zirconia for catalytic applications. Acta Metall. Sin. (Engl. Lett.) 26 (2013) 565-573.
DOI: 10.1007/s40195-013-0008-0
Google Scholar
[4]
Y.-W. Hsu, K.-H. Yang, K.-M. Chang, S.-W. Yeh, M.-C. Wang, Synthesis and crystallization behavior of 3mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanosized powders prepared using a simple co-precipitation process, J. Alloys Compd. 509 (2011) 6864-687.
DOI: 10.1016/j.jallcom.2011.03.162
Google Scholar
[5]
N.Y. Fedorenko, S.V. Mjakin, T.V. Khamova, M.V. Kalinina, O.A. Shilova, Relationship among the composition, synthesis conditions, and surface acid-basic properties of xerogel particles based on zirconium dioxide, Ceram. Int. 48 (2022) 6245-6249.
DOI: 10.1016/j.ceramint.2021.11.165
Google Scholar
[6]
A.R. Supandi, N. Nunotani, N. Imanaka, Particle size effect of ZrO2 supports on catalytic liquid-phase oxidation of phenol over Pt/CeO2-ZrO2-Bi2O3/ZrO2 catalysts, J. Asian Ceram. Soc. 8 (2020) 745-752.
DOI: 10.1080/21870764.2020.1786238
Google Scholar
[7]
N. Li, D. An, Z. Yi, N. Yu, Z. Xie, Synthesis of 1Y6Ce–ZrO2 nanoparticles with excellent sintering performance via novel Sol-Gel-Flux method, Ceram. Int. 48 (2022) 2637-2644.
DOI: 10.1016/j.ceramint.2021.10.047
Google Scholar
[8]
Z. Huang, W. Han, Z. Feng, J. Qi, D. Wu, N. Wei, Z. Tang, Y. Zhang, J. Duan, T. Lu, The effects of precipitants on co-precipitation synthesis of yttria-stabilized zirconia nanocrystalline powders, J. Sol-Gel Sci. Technol. 90 (2019) 359-368.
DOI: 10.1007/s10971-019-04947-y
Google Scholar
[9]
R. Pazhani, H. Padma Kumar, A. Varghese, A. Moses Ezhil Raj, S. Solomon, J. K. Thomas, Synthesis, vacuum sintering and dielectric characterization of zirconia (t-ZrO2) nanopowder, J. Alloys Compd. 509 (2011) 6819-6823.
DOI: 10.1016/j.jallcom.2011.03.089
Google Scholar
[10]
K. Tõnsuaadu, A. Zalga, A. Beganskiene, A. Kareiva, Thermoanalytical study of the YSZ precursors prepared by aqueous sol–gel synthesis route, J. Therm. Anal. Calorim. 110 (2012) 77-83.
DOI: 10.1007/s10973-011-2184-3
Google Scholar
[11]
S.-H. Ri, S.-O. Pak, H.-S. Kwak, Y. Ri, S.-J. Im, Improving dispersion stability of zirconium hydroxide sol for preparing nano zirconia by the reverse precipitation, J. Disper. Sci. Technol. 40 (2018) 679-685.
DOI: 10.1080/01932691.2018.1478304
Google Scholar
[12]
H. Shokry, M. Elkady, H. Hamad, Synthesis and Characterization of Stabilized Tetragonal Nano Zirconia by Precipitation Method, J. Nano Res. 56 (2019) 142-151.
DOI: 10.4028/www.scientific.net/jnanor.56.142
Google Scholar
[13]
S. Zinatloo-Ajabshir, M. Salavati-Niasari, Preparation of nanocrystalline cubic ZrO2 with different shapes via a simple precipitation approach, J. Mater. Sci. Mater. Electron. 27 (2015) 3918-3928.
DOI: 10.1007/s10854-015-4243-1
Google Scholar
[14]
H. Reveron, H. Vesteghem, Synthesis and thermal behaviour of nanostructured ZrO2 powders obtained under hydrothermal conditions, J. Nanosci. Nanotechnol. 5 (2005) 1643-1650.
DOI: 10.1166/jnn.2005.179
Google Scholar
[15]
S.A. Khan, Z. Fu, S.S. Rehman, M. Asif, W. Wang, H. Wang, Study of template-free synthesis hierarchical m-ZrO2 nanorods by hydrothermal method, Powder Technol. 256 (2014) 71-74.
DOI: 10.1016/j.powtec.2014.02.012
Google Scholar
[16]
M. Taguchi, T. Nakane, A. Matsushita, Y. Sakka, T. Uchikoshi, T. Funazukuri, T. Naka, One-pot synthesis of monoclinic ZrO2 nanocrystals under subcritical hydrothermal conditions, J. Supercrit. Fluids 85 (2014) 57-61.
DOI: 10.1016/j.supflu.2013.11.001
Google Scholar
[17]
A. Yurdakul, H. Gocmez, One-step hydrothermal synthesis of yttria-stabilized tetragonal zirconia polycrystalline nanopowders for blue-colored zirconia-cobalt aluminate spinel composite ceramics, Ceram. Int. 45 (2019) 5398-5406.
DOI: 10.1016/j.ceramint.2018.11.240
Google Scholar
[18]
C.V. Reddy, B. Babu, I.N. Reddy, J. Shim, Synthesis and characterization of pure tetragonal ZrO2 nanoparticles with enhanced photocatalytic activity, Ceram. Int. 44 (2018) 6940-6948.
DOI: 10.1016/j.ceramint.2018.01.123
Google Scholar
[19]
I. Gonzalo-Juan, B. Ferrari, M.T. Colomer, M.A. Rodriguez, A.J. Sanchez-Herencia, P.Y. Koh, A.S. Teja, Synthesis and dispersion of yttria-stabilized zirconia (YSZ) nanoparticles in supercritical water, Mater. Chem. Phys. 134 (2012) 451-458.
DOI: 10.1016/j.matchemphys.2012.03.016
Google Scholar
[20]
L. Bai, K. Zhu, L. Su, J. Qiu, H. Ji, Synthesis of (K, Na)NbO3 particles by high temperature mixing method under hydrothermal conditions, Mater. Lett. 64 (2010) 77-79.
DOI: 10.1016/j.matlet.2009.10.013
Google Scholar
[21]
M. Guo, G. Wang, Y. Zhao, H. Li, K. Tang, Y. Zhao, K. Burgess, Preparation of Nano-ZrO2 powder via a microwave-assisted hydrothermal method, Ceram. Int. 47 (2021) 12425-12432.
DOI: 10.1016/j.ceramint.2021.01.099
Google Scholar
[22]
A.K. Singh, U.T. Nakate, Microwave synthesis, characterization, and photoluminescence properties of nanocrystalline zirconia, Scientific World J. 2014 (2014) 349457.
DOI: 10.1155/2014/349457
Google Scholar
[23]
F. Sayılkan, M. Asiltürk, E. Burunkaya, E. Arpaç, Hydrothermal synthesis and characterization of nanocrystalline ZrO2 and surface modification with 2-acetoacetoxyethyl methacrylate, J. Sol-Gel Sci. Technol. 51 (2009) 182-189.
DOI: 10.1007/s10971-009-1970-x
Google Scholar
[24]
J. Sun, J. Binner, J. Bai, Effect of surface treatment on the dispersion of nano zirconia particles in non-aqueous suspensions for stereolithography, J. Eur. Ceram. Soc. 39 (2019) 1660-1667.
DOI: 10.1016/j.jeurceramsoc.2018.10.024
Google Scholar
[25]
YZ. Ye, X. Qin, N. Lai, Q. Peng, X. Li, C. Li, Synthesis and performance of an acrylamide copolymer containing nano-ZrO2 as enhanced oil recovery chemical, J. Chem. 2013 (2013) 1-10.
DOI: 10.1155/2013/437309
Google Scholar
[26]
G. D. Agli, G. Mascolo, Hydrothermal synthesis of ZrO2–Y2O3 solid solutions at low temperature, J. Eur. Ceram. Soc. 20 (2000) 139-145.
DOI: 10.1016/s0955-2219(99)00151-x
Google Scholar
[27]
Z. Feng, J. Qi, Z. Huang, X. Xie, N. Wei, T. Lu, Optimization of the amount and molecular weight of dispersing agent PEG during the Co-precipitation preparation of nano-crystalline C-YSZ powder, J. Nanosci. Nanotechnol. 17 (2017) 2613-2619.
DOI: 10.1166/jnn.2017.12690
Google Scholar
[28]
N. Garg, V.K. Mittal, S. Bera, A. Dasgupta, V. Sankaralingam, Preparation and characterization of tetragonal dominant nanocrystalline ZrO2 obtained via direct precipitation, Ceram. Int. 38 (2012) 2507-2512.
DOI: 10.1016/j.ceramint.2011.11.020
Google Scholar
[29]
F. Q. Tang, Y. F. Zhang, J. K. Guo, Effect of dispersants on surface chemical properties of nano-zirconia suspensions, Ceram. Int. 26 (2000) 93-97.
Google Scholar
[30]
S. X. Zhou, G. Garnweitner, M. Niederberger, M. Antonietti, Dispersion behavior of zirconia nanocrystals and their surface functionalization with vinyl group-containing ligands, J. Langmuir 23 (2007) 9178-9187.
DOI: 10.1021/la700837u
Google Scholar