Magnetic, Optical Properties of Magnetite Nanoparticle Synthesized in Different Parameters

Article Preview

Abstract:

There are many methods for synthesizing magnetite nanoparticles. Most methods take a long time, and the result is undesirable. In this paper a green method was used to synthesize nanoparticles because it takes a short time and is both straightforward and eco-friendly. It is done by adding : =1:2 molar ratio solution with different amounts of extract and different amounts of NaOH solution for 20 min at different temperatures, in hotplate stirrers, to control their relative size. UV-Vis spectroscopy, vibrating sample magnetometer technique (VSM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) were used to characterize the magnetite nanoparticles. The result confirms that the changes in amounts of NaOH and extract led to a change in the pH of a solution and that the increase in amounts of the extract caused the low addition of NaOH. These changes influenced the process of synthesis and characterization. The Uv-vis analysis confirms that the surface plasmon resonance had a highly visible brad peak in the 290–460 nm range, as well as a peak shift to shorter wavelengths (blue shift) with a pH change and a peak shift to longer wavelengths (red shift) with a temperature change. TEM imaging confirms that all the synthesized had a spherical shape with size changed according to a parameter change of within 40–9 nm. Magnetic analysis showed the magnetite nanoparticles synthesized have smaller sizes and are superparamagnetic with the influence of particle size on the magnetic properties, including Hc, Ms, and Mr.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-68

Citation:

Online since:

July 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.A. Aobaid, H.S. Hussain, Design of a Magnetic-Sensor Based on Fe3O4 Nanofluid Infiltration, Al-Nahrain J. Sci. 23 (2020) 45–48.

DOI: 10.22401/anjs.23.3.06

Google Scholar

[2] M.A. Dheyab, A.A. Aziz, MS Jameel, O.A. Noqta, B. Mehrdel, Synthesis and coating methods of biocompatible iron oxide/gold nanoparticle and nanocomposite for biomedical applications, Chinese J. Phys. 64 (2020) 305–325.

DOI: 10.1016/j.cjph.2019.11.014

Google Scholar

[3] H. Nosrati, M. Salehiabar, M. Fridoni, M.-A. Abdollahifar, H.K. Manjili, S. Davaran, H. Danafar, New insight about biocompatibility and biodegradability of iron oxide magnetic nanoparticles: stereological and in vivo MRI monitor, Sci. Rep. 9 (2019) 1–10.

DOI: 10.1038/s41598-019-43650-4

Google Scholar

[4] V.B. Barbeta, R.D.F. Jardim, P.K. Kiyohara, F.B. Effenberger, L.M. Rossi, Magnetic properties of Fe3O4 nanoparticles coated with oleic and dodecanoic acids, J. Appl. Phys. 107 (2010) 73913.

DOI: 10.1063/1.3311611

Google Scholar

[5] R.K. Ismail, R.M.S. Al-Haddad, T.H. Mubarak, Time effect on the red shift of surface plasmonic resonance core-shell SiO2: Gold nanoparticles (AuNPs), in: AIP Conf. Proc., AIP Publishing LLC, 2019: p.20095.

DOI: 10.1063/1.5138581

Google Scholar

[6] A. Hojjati-Najafabadi, S. Salmanpour, F. Sen, P.N. Asrami, M. Mahdavian, M.A. Khalilzadeh, A Tramadol Drug Electrochemical Sensor Amplified by Biosynthesized Au Nanoparticle Using Mentha aquatic Extract and Ionic Liquid, Top. Catal. (2021) 1–8.

DOI: 10.1007/s11244-021-01498-x

Google Scholar

[7] C. Toyos-Rodríguez, J. Calleja-García, L. Torres-Sánchez, A. López, A.M. Abu-Dief, A. Costa, L. Elbaile, R.D. Crespo, J.S. Garitaonandia, E. Lastra, A Simple and Reliable Synthesis of Superparamagnetic Magnetite Nanoparticles by Thermal Decomposition of Fe (acac) 3, J. Nanomater. 2019 (2019).

DOI: 10.1155/2019/2464010

Google Scholar

[8] K. Hedayati, M. Goodarzi, D. Ghanbari, Hydrothermal synthesis of Fe3O4 nanoparticles and flame resistance magnetic poly styrene nanocomposite, J. Nanostructures. 7 (2017) 32–39.

Google Scholar

[9] R.S. Riley, E.S. Day, Gold nanoparticle‐mediated photothermal therapy: applications and opportunities for multimodal cancer treatment, Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology. 9 (2017) e1449.

DOI: 10.1002/wnan.1449

Google Scholar

[10] J. Balachandramohan, S.Anandan, T.Sivasankar. A simple approach for the sonochemical synthesis of Fe3O4- guargum nanocomposite and its catalytic reduction of p-nitroaniline. Ultrason Sonochem. 40 (2018): 1-10.

DOI: 10.1016/j.ultsonch.2017.06.012

Google Scholar

[11] A.H.M. Yusoff, MN Salimi, M.F. Jamlos, Synthesis and characterization of biocompatible Fe3O4 nanoparticles at different pH, in: AIP Conf. Proc., AIP Publishing LLC, 2017: p.20010.

DOI: 10.1063/1.4981832

Google Scholar

[12] C. Nayek, K. Manna, G. Bhattacharjee, P. Murugavel, I. Obaidat, Investigating size-and temperature- dependent coercivity and saturation magnetization in PEG coated Fe3O4 nanoparticles, Magnetochemistry. 3 (2017) 19.

DOI: 10.3390/magnetochemistry3020019

Google Scholar

[13] C.-W. Lin, J.-M. Chen, Y.-J. Lin, L.-W. Chao, S.-Y. Wei, C.-H. Wu, C.-C. Jeng, L.-M. Wang, K.-L. Chen, Magneto-Optical Characteristics of Streptavidin-Coated Fe 3 O 4@ Au Core-Shell Nanoparticles for Potential Applications on Biomedical Assays, Sci. Rep. 9 (2019) 1–8.

DOI: 10.1038/s41598-019-52773-7

Google Scholar

[14] A.K. Singh, O.N. Srivastava, K. Singh, Shape and size-dependent magnetic properties of Fe3O4 nanoparticles synthesized using piperidine, Nanoscale Res. Lett. 12 (2017) 1–7.

DOI: 10.1186/s11671-017-2039-3

Google Scholar

[15] A. Hojjati-Najafabadi, F. Davar, Z. Enteshari, M. Hosseini-Koupaei, Antibacterial and photocatalytic behaviour of green synthesis of Zn0. 95Ag0. 05O nanoparticles using herbal medicine extract, Ceram. Int. 47 (2021) 31617–31624.

DOI: 10.1016/j.ceramint.2021.08.042

Google Scholar

[16] A.H. Najafabadi, A. Ghasemi, R. Mozaffarinia, Synthesis and evaluation of microstructural and magnetic properties of Cr 3+ substitution barium hexaferrite nanoparticles (BaFe 10.5− x Al 1.5 Cr x O 19), J. Clust. Sci. 27 (2016) 965–978.

DOI: 10.1007/s10876-015-0963-x

Google Scholar

[17] A. Cheraghi, F. Davar, M. Homayoonfal, A. Hojjati-Najafabadi, Effect of lemon juice on microstructure, phase changes, and magnetic performance of CoFe2O4 nanoparticles and their use on release of anti-cancer drugs, Ceram. Int. (2021).

DOI: 10.1016/j.ceramint.2021.04.028

Google Scholar

[18] NR. Jannah, D. Onggo, Synthesis of Fe3O4 nanoparticles for colour removal of printing ink solution, in: J. Phys. Conf. Ser., IOP Publishing, 2019: p.12040.

DOI: 10.1088/1742-6596/1245/1/012040

Google Scholar

[19] Q. Li, C.W. Kartikowati, S. Horie, T. Ogi, T. Iwaki, K. Okuyama, Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe 3 O 4 nanoparticles, Sci. Rep. 7 (2017) 1–7.

DOI: 10.1038/s41598-017-09897-5

Google Scholar

[20] Y.P. Yew, K. Shameli, M. Miyake, NBBA Khairudin, S.E.B. Mohamad, T. Naiki, K.X. Lee, Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: A review, Arab. J. Chem. 13 (2020) 2287–2308.

DOI: 10.1016/j.arabjc.2018.04.013

Google Scholar

[21] S. Venkateswarlu, BN. Kumar, B. Prathima, Y. SubbaRao, N.V.V. Jyothi, A novel green synthesis of Fe3O4 magnetic nanorods using Punica Granatum rind extract and its application for removal of Pb (II) from aqueous environment, Arab. J. Chem. 12 (2019) 588–596.

DOI: 10.1016/j.arabjc.2014.09.006

Google Scholar

[22] Y.P. Yew, K. Shameli, M. Miyake, N. Kuwano, NBBA Khairudin, S.E.B. Mohamad, K.X. Lee, Green synthesis of magnetite (Fe3O4) nanoparticles using seaweed (Kappaphycus alvarezii) extract, Nanoscale Res. Lett. 11 (2016) 1–7.

DOI: 10.1186/s11671-016-1498-2

Google Scholar

[23] H.M. Asoufi, T.M. Al-Antary, A.M. Awwad, Magnetite (Fe3O4) nanoparticles synthesis and anti green peach aphid activity (myzuspersicae sulzer), J. Chem. Biochem. 6 (2018) 9–16.

DOI: 10.15640/jcb.v6n1a2

Google Scholar

[24] H.R. Humud, Copper nanoparticles prepared by pulsed exploding wire, Iraqi J. Phys. 13 (2015) 128–138.

DOI: 10.30723/ijp.v13i26.293

Google Scholar

[25] S. Honary, P. Ebrahimi, H. Asgari-rad, F. Mohamadpour, Optimization of Iron Oxide Nanoparticle Preparation for Biomedical Applications by Using Box-Behenken Design, Int. J. Nanosci. Nanotechnol. 10 (2014) 257–261.

Google Scholar

[26] R.M. Abdallah, R.M.S. Al-Haddad, Optical and Morphology Properties of the Magnetite (Fe3O4) Nanoparticles Prepared by Green Method, in: J. Phys. Conf. Ser., IOP Publishing, 2021: p.12022.

Google Scholar

[27] A.H Fathallah, H.S. Akbar, F.M.N. Al-Deen, Preparation and Characterization of Superparamagnetic Iron Oxide Nanoparticles (Fe3O4) for Biological Applications, Tikrit J. Pure Sci. 26 (2021) 83–91.

DOI: 10.25130/tjps.v26i1.103

Google Scholar

[28] A. Ruíz-Baltazar, R. Esparza, G. Rosas, R. Pérez, Effect of the surfactant on the growth and oxidation of iron nanoparticles, J. Nanomater. 2015 (2015).

DOI: 10.1155/2015/240948

Google Scholar

[29] E.A. Kwizera, E. Chaffin, Y. Wang, X. Huang, Synthesis and properties of magnetic-optical core–shell nanoparticles, RSC Adv. 7 (2017) 17137–17153.

DOI: 10.1039/c7ra01224a

Google Scholar

[30] M. Mahdavi, M. Bin Ahmad, M.J. Haron, F. Namvar, B. Nadi, M.Z.A. Rahman, J. Amin, Synthesis, surface modification and characterization of biocompatible magnetic iron oxide nanoparticles for biomedical applications, Molecules. 18 (2013) 7533–7548.

DOI: 10.3390/molecules18077533

Google Scholar

[31] NR. Putra, D.N. Rizkiyah, AS Zaini, M.A.C. Yunus, S. Machmudah, Z. binti Idham, M.S. Hazwan Ruslan, Effect of particle size on yield extract and antioxidant activity of peanut skin using modified supercritical carbon dioxide and soxhlet extraction, J. Food Process. Preserv. 42 (2018) e13689.

DOI: 10.1111/jfpp.13689

Google Scholar

[32] S. Upadhyay, K. Parekh, B. Pandey, Influence of crystallite size on the magnetic properties of Fe3O4 nanoparticles, J. Alloys Compd. 678 (2016) 478–485.

DOI: 10.1016/j.jallcom.2016.03.279

Google Scholar

[33] B. Constant-Mandiola, H. Aguilar-Bolados, J. Geshev, R. Quíjada, Study of the Influence of Magnetite Nanoparticles Supported on Thermally Reduced Graphene Oxide as Filler on the Mechanical and Magnetic Properties of Polypropylene and Polylactic Acid Nanocomposites, Polymers (Basel). 13 (2021) 1635.

DOI: 10.3390/polym13101635

Google Scholar

[34] S. Shukla, P.K. Deheri, R. V Ramanujan, Magnetic nanostructures: Synthesis, properties, and applications, in: Springer Handb. Nanomater., Springer, 2013: p.473–514.

DOI: 10.1007/978-3-642-20595-8_12

Google Scholar

[35] J.D. Agudelo-Giraldo, F.N. Jiménez-García, E. Restrepo-Parra, The Influence of Thickness on the Magnetic Properties of Nanocrystalline Thin Films: A Computational Approach, Computation. 9 (2021) 45.

DOI: 10.3390/computation9040045

Google Scholar

[36] C. Prasad, G. Yuvaraja, P. Venkateswarlu, Biogenic synthesis of Fe3O4 magnetic nanoparticles using Pisum sativum peels extract and its effect on magnetic and Methyl orange dye degradation studies, J. Magn. Magn. Mater. 424 (2017) 376–381.

DOI: 10.1016/j.jmmm.2016.10.084

Google Scholar