Corrosion Protection of Mild Steel by Polyaniline/Tin-Doped Titania Nanocomposite

Article Preview

Abstract:

This study employed the template-free chemical oxidative polymerisation method to synthesise polyaniline (PANI) and polyaniline/tin-doped titania (PANI/Sn-doped TiO2) nanocomposite as corrosion inhibitors. FTIR and XRD were employed to characterise the chemical composition of the prepared samples. TEM and FESEM microscopy validated the presence of the PANI and that the Sn-doped TiO2 nanoparticle were successfully incorporated into PANI to form the nanocomposite. The synthesised materials were mixed in the polyvinyl butyral (PVB) binder, coated onto mild steel substrates, and exposed to 3.5 wt.% NaCl solution for 30 days. Altogether, three coating systems were tested, i.e., pure PVB, PVB + PANI, and PVB + PANI/Sn-doped TiO2. The corrosion parameters were measured via EIS and Tafel polarisation techniques. Overall, the PANI/Sn-doped TiO2 nanocomposite as a corrosion inhibitor effectively inhibited the corrosion of the mild steel, and its corrosion rate was 3.484 x 10-7 mm/year.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

81-97

Citation:

Online since:

September 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Sathiyanarayanan, S. Syed Azim, G. Venkatachari, Preparation of polyaniline-TiO2 composite and its comparative corrosion protection performance with polyaniline, Synth. Met. 157 (2007) 205–213.

DOI: 10.1016/j.synthmet.2007.01.012

Google Scholar

[2] P. Herrasti, F. J. Recio, P. Ocón, E. Fatás, Effect of the polymer layers and bilayers on the corrosion behavior of mild steel: Comparison with polymers containing Zn microparticles, Prog. Org. Coat. 54 (2005) 285–291.

DOI: 10.1016/j.porgcoat.2005.07.001

Google Scholar

[3] H. Lu, Y. Zhou, S. Vongehr, K. Hu, X. Meng, Electropolymerization of PANI coating in nitric acid for corrosion protection of 430 SS, Synth. Met. 161 (2011) 1368-1376.

DOI: 10.1016/j.synthmet.2011.05.003

Google Scholar

[4] F. Yang, T. Liu, J. Li, S. Qiu, H. Zhao, Anticorrosive behavior of a zinc-rich epoxy coating containing sulfonated polyaniline in 3.5 % NaCl solution, RSC Adv. 8 (2008) 13237–13247.

DOI: 10.1039/c8ra00845k

Google Scholar

[5] M. Ladan, W. J. Basirun, S. N. Kazi, F. A. Rahman, Corrosion protection of AISI 1018 steel using Co-doped TiO2/polypyrrole nanocomposites in 3.5 % NaCl solution, Mater. Chem. Phys. 192 (2017) 361–373.

DOI: 10.1016/j.matchemphys.2017.01.085

Google Scholar

[6] J. Yin, X. Xia, L. Xiang, Y. Qiao, X. Zhao, The electrorheological effect of polyaniline nanofiber, nanoparticle and microparticle suspensions, Smart Mater. Struct. 18 (2009) 095007.

DOI: 10.1088/0964-1726/18/9/095007

Google Scholar

[7] P. M. Kibasomba, S. Dhlamini, M. Maaza, C. -P. Lu, M. M. Rashad, D. A. Rayan, B. W. Mwakikunga, Strain and grain size of TiO2 nanoparticles from TEM, Raman spectroscopy and XRD: The revisiting of the Williamson-Hall plot method, Results Phys. 9 (2018) 628-635.

DOI: 10.1016/j.rinp.2018.03.008

Google Scholar

[8] S. M. Hassan, A. I. Ahmed, M. A. Mannaa, Surface acidity, catalytic and photocatalytic activities of new type H3PW12O40/Sn-TiO2 nanoparticles, Colloids Surf. A. 577 (2019) 147–157.

DOI: 10.1016/j.colsurfa.2019.05.070

Google Scholar

[9] R. E. Morsi, E. A. Khamis, A. M. Al-Sabagh, Polyaniline nanotubes: Facile synthesis, electrochemical, quantum chemical characteristics and corrosion inhibition efficiency, J. Taiwan Inst. Chem. Eng. 60 (2016) 573-581.

DOI: 10.1016/j.jtice.2015.10.028

Google Scholar

[10] M. Ayad, G. El-Hefnawy, S. Zaghlol, Facile synthesis of polyaniline nanoparticles; its adsorption behavior, Chem. Eng. J. 217 (2013) 460-465.

DOI: 10.1016/j.cej.2012.11.099

Google Scholar

[11] S. Syed Azim, S. Sathiyanarayanan, G. Venkatachari, Anticorrosive properties of PANI-ATMP polymer containing organic coating, Prog. Org. Coat. 56 (2006) 154-158.

DOI: 10.1016/j.porgcoat.2006.03.004

Google Scholar

[12] M. Alijani, B. K. Kaleji, Optical and structural properties of TiO2 nanopowders with Ce/Sn doping at various calcination temperature and time, Opt. Quantum Electron. 49 (2017) 34.

DOI: 10.1007/s11082-016-0851-0

Google Scholar

[13] M. Javed, S. M. Abbas, M. Siddiq, D. Han, L. Niu, Mesoporous silica wrapped with graphene oxide conducting PANI nanowires as a novel hybrid electrode for supercapacitor, J. Phys. Chem. Solids. 113 (2018) 220-228.

DOI: 10.1016/j.jpcs.2017.10.037

Google Scholar

[14] A. Ranjitha, M. Thambidurai, F. Shini, N. Muthukumarasamy, D. Velauthapillai, Effect of doped TiO2 film as electron transport layer for inverted organic solar cell, Mater. Sci. Energy Technol. 2 (2019) 385-388.

DOI: 10.1016/j.mset.2019.02.006

Google Scholar

[15] L. Jiang, J. A. Syed, Y. Gao, H. Lu, X. Meng, Electrodeposition of Ni(OH)2 reinforced polyaniline coating for corrosion protection of 304 stainless steel, Appl. Surf. Sci. 440 (2018) 1011-1021.

DOI: 10.1016/j.apsusc.2018.01.145

Google Scholar

[16] N. Dinodi, A. Nityananda Shetty, Electrochemical investigations on the corrosion behavior of magnesium alloy ZE41 in a combined medium of chloride and sulphate, J. Magnes. Alloy. 1 (2013) 201-209.

DOI: 10.1016/j.jma.2013.08.003

Google Scholar

[17] D. Yu, J. Tian, J. Dai, X. Wang, Corrosion resistance of three-layer superhydrophobic composite coating on carbon steel in seawater, Electrochim. Acta. 97 (2013) 409-419.

DOI: 10.1016/j.electacta.2013.03.071

Google Scholar

[18] M. R. Mahmoudian, Y. Alias, W. J. Basirun, M. Ebadi, Effects of different polypyrrole/TiO2 nanocomposite morphologies in polyvinyl butyral coatings for preventing the corrosion of mild steel, Appl. Surf. Sci. 268 (2013) 302-311.

DOI: 10.1016/j.apsusc.2012.12.082

Google Scholar

[19] R. M. Bandeira, J. van Drunen, G. Tremiliosi-Filho, J. R. dos Santos, J. M. E. de Matos, Polyaniline/polyvinyl chloride blended coatings for the corrosion protection of carbon steel, Prog. Org. Coat. 106 (2017) 50-59.

DOI: 10.1016/j.porgcoat.2017.02.009

Google Scholar

[20] N. Jiang, Y. Liu, X. Yu, H. Zhang, M. Wang, Corrosion resistance of nickel-phosphorus/nano-ZnO composite multilayer coating electrodeposited on carbon steel in acidic chloride environments, Int. J. Electrochem. Sci. 15 (2020) 5520-5528.

DOI: 10.20964/2020.06.50

Google Scholar

[21] L. Ying, Z. Fu, K. Wu, C. Wu, T. Zhu, Y. Xie, G. Wang, Effect of TiO2 sol and PTFE emulsion on properties of Cu-Sn antiwear and friction reduction coatings, Coatings. 9 (1) (2019) 59.

DOI: 10.3390/coatings9010059

Google Scholar

[22] A. Li, S. Chen, Z. Ma, M. Sun, G. Zhu, Y. Zhang, W. Wang, Corrosion protection properties of polyvinyl butyral/polyaniline-graphene oxide/poly (methylhydrosiloxane) composite coating for AA2024 aluminum alloy, Diam. Relat. Mater. 116 (2021) 108397.

DOI: 10.1016/j.diamond.2021.108397

Google Scholar

[23] W. Lu, R. L. Elsenbaumer, B. Wessling, Corrosion protection of mild steel by coatings containing polyaniline, Synth. Met. 71 (1995) 2163-2166.

DOI: 10.1016/0379-6779(94)03204-j

Google Scholar