Electrolyte-Dependent Capacitance of Titanium Dioxide Nanotube Array Electrode Substrate

Article Preview

Abstract:

The anatase titanium dioxide nanotube array (TiO2 NTA) with short and independent nanotube film structure is applied as stable metal oxide electrode substrate. The influence of different proton acid electrolytes is fully investigated on the electrical double-layer capacitance. The anatase TiO2 NTA electrode substrate conducts reversible protonation-deprotonation process of dissociation hydrogen ion and electrostatic adsorption-desorption process of equilibrium anion in the cycling charge-discharge process. The reversible properties could be well proved by highly symmetric characteristic of positive-negative sweeping current and charge-discharge potential. The protonated TiO2 NTA electrode substrate reveals cyclic voltammetry-based capacitances of 0.147 and 0.124 mF cm-2, galvanostatic charge-discharge-based capacitances of 0.167 and 0.148 mF cm-2 when similar dissociation proton concentration is maintained in 1.0 M H2SO4 and 1.0 M HCl. The TiO2/H2SO4 exhibits similar capacitance enhancement ratio of 1.19 and 1.13 in comparison with of the TiO2/HCl. The corresponding electrical double-layer capacitance at the same dissociation proton condition is mostly dependent on the electrostatic interaction between the protonated TiO2 and equilibrium anions in different proton acid electrolytes rather than anion diffusion. The theoretical simulation calculation reveals that TiOOH+-HSO4- shows lower interaction interface energy and higher total densities of states than TiOOH+-Cl-. Accordingly, TiO2/H2SO4 conducts more feasible protonation and electrostatic adsorption process rather than TiO2/HCl, contributing to its superior electrical double-layer capacitance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

71-80

Citation:

Online since:

September 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Masarapu, L.-P. Wang, X. Li, B. Wei, Tailoring Electrode/Electrolyte Interfacial Properties in Flexible Supercapacitors by Applying Pressure, Adv. Energy Mater. 2 (2012) 546-552.

DOI: 10.1002/aenm.201100529

Google Scholar

[2] C.C. Raj, R. Prasanth, Review-Advent of TiO2Nanotubes as Supercapacitor Electrode, J. Electrochem. Soc. 165 (2018) E345-E358.

DOI: 10.1149/2.0561809jes

Google Scholar

[3] S.T. Senthilkumar, R.K. Selvan, J.S. Melo, Redox additive/active electrolytes: a novel approach to enhance the performance of supercapacitors, J. Mater. Chem. A 1 (2013) 12386-12394.

DOI: 10.1039/c3ta11959a

Google Scholar

[4] Q. Wang, W. Chen, C. Zhao, Z. Li, Analysis of overpotential in discharge process associated with precipitation for vanadium-manganese flow battery, J. Power Sources 517 (2022) 230717.

DOI: 10.1016/j.jpowsour.2021.230717

Google Scholar

[5] A. Elmouwahidi, E. Bailón-García, J. Castelo-Quibén, A.F. Pérez-Cadenas, F.J. Maldonado-Hódar, F. Carrasco-Marín, Carbon–TiO2 composites as high-performance supercapacitor electrodes: synergistic effect between carbon and metal oxide phases, J. Mater. Chem. A 6 (2018) 633-644.

DOI: 10.1039/c7ta08023a

Google Scholar

[6] Y. Xie, Fabrication and charge storage capacitance of PPY/TiO2/PPY jacket nanotube array, J. Polym. Eng. 41 (2021) 137-143.

DOI: 10.1515/polyeng-2020-0232

Google Scholar

[7] Y. Xie, Photoelectrochemical performance of tubewall-separated titanium dioxide nanotube array photoelectrode, Asia-Pacific J. Chem. Eng. 16 (2021) e2688.

DOI: 10.1002/apj.2688

Google Scholar

[8] Y. Xie, Fabrication of Highly Ordered Ag/TiO2 Nanopore Array as a Self-Cleaning and Recycling SERS Substrate, Aust. J. Chem. 74 (2021) 715-721.

DOI: 10.1071/ch21142

Google Scholar

[9] I. Heng, C.W. Lai, J.C. Juan, A. Numan, J. Iqbal, E.Y.L. Teo, Low-temperature synthesis of TIO2 nanocrystals for high performance electrochemical supercapacitors, Ceram. Int. 45 (2019) 4990-5000.

DOI: 10.1016/j.ceramint.2018.11.199

Google Scholar

[10] S. Gimenez, H.K. Dunn, P. Rodenas, F. Fabregat-Santiago, S.G. Miralles, E.M. Barea, R. Trevisan, A. Guerrero, J. Bisquert, Carrier density and interfacial kinetics of mesoporous TiO2 in aqueous electrolyte determined by impedance spectroscopy, J. Electroanal. Chem. 668 (2012) 119-125.

DOI: 10.1016/j.jelechem.2011.12.019

Google Scholar

[11] F. Fabregat-Santiago, G. Garcia-Belmonte, J. Bisquert, A. Zaban, P. Salvador, Decoupling of transport, charge storage, and interfacial charge transfer in the nanocrystalline TiO2/electrolyte system by impedance methods, J. Phys. Chem. B 106 (2002) 334-339.

DOI: 10.1021/jp0119429

Google Scholar

[12] L. Wu, K. Zhang, X. Zhu, S. Cao, D. Niu, X. Feng, Enhanced Capacitance of TiO2 Nanotubes with a Double-Layer Structure Fabricated in NH4F/H3PO4 Mixed Electrolyte, Langmuir 35 (2019) 5125-5129.

DOI: 10.1021/acs.langmuir.8b04162

Google Scholar

[13] P. Fernández-Ibáñez, F.J. de las Nieves, S. Malato, Titanium Dioxide/Electrolyte Solution Interface: Electron Transfer Phenomena, J. Colloid Interface Sci. 227 (2000) 510-516.

DOI: 10.1006/jcis.2000.6917

Google Scholar

[14] L. Taveira, A. Sagues, J. Macak, P. Schmuki, Impedance Behavior of TiO2 Nanotubes Formed by Anodization in NaF Electrolytes, J. Electrochem. Soc. 155 (2008) C293-C302.

DOI: 10.1149/1.2898503

Google Scholar

[15] J.A. Díaz-Real, G.C. Dubed-Bandomo, J. Galindo-de-la-Rosa, L.G. Arriaga, J. Ledesma-García, N. Alonso-Vante, Impact of the anodization time on the photocatalytic activity of TiO2 nanotubes, Beilstein J Nanotech 9 (2018) 2628-2643.

DOI: 10.3762/bjnano.9.244

Google Scholar

[16] Y. Xie, Y. Chen, Experimental and computational investigation of Cu-N coordination bond strengthened polyaniline for stable energy storage, J. Mater. Sci. 56 (2021) 10135-10153.

DOI: 10.1007/s10853-021-05920-3

Google Scholar