Application of Fe3O4@Carbon/Graphene Oxide Nanocomposites for Cu(II) Removal from Wastewater

Article Preview

Abstract:

The Cu2+ in the drinking water has a very serious impact on human health and social ecology. Many countries have the policy on the Cu2+ concentration limitation in drinking water and the industrial Cu2+ emission standards for the treated wastewater. Scientists have developed many methods to remove Cu2+ from wastewater. Among all the adsorption method is widely used due to its high efficacy, feasibility and low cost. The adsorbent is critical to achieving superior Cu2+ removal result. In this paper, Fe3O4/carbon-graphene oxide nanocomposites (Fe3O4@C-GO) were prepared by a hydrothermal method. The Fe3O4@C-GO is the main absorbent to Cu2+ through chemisorption. The specific surface area of Fe3O4@C-GO dramatically increases from 16 m2/g of Fe3O4@C to 62 m2/g, which expands the Cu2+ absorption capacity up to 350 mg/g. Fe3O4 nanoparticles with about 12 nm in diameter are uniformly encapsulated in the C-GO matrix, and therefore the Fe3O4@C-GO can be easily separated from the solution via magnetics. This adsorbent is also very easily recovered by an external magnetic field from the treated wastewater and has high reusability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

41-58

Citation:

Online since:

September 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Agency for toxic substances and disease registry, Public health statement: Copper. (2004-09-26). https://www.atsdr.cdc.gov/ToxProfiles/tp132-c1-b.

Google Scholar

[2] E.G. Farmaki, N.S. Thomaidis, I.N. Pasias, C. Baulard, L. Papaharisis, C.E. Efstathiou, Environmental impact of intensive aquaculture: Investigation on the accumulation of metals and nutrients in marine sediments of Greece, Sci. Total Environ. 485 (2014) 554-562.

DOI: 10.1016/j.scitotenv.2014.03.125

Google Scholar

[3] T. Kameda, Y. Suzuki, T. Yoshioka, Removal of arsenic from an aqueous solution by coprecipitation with manganese oxide, J. Environ. Chem. Eng. 2 (2014) 2045-2049.

DOI: 10.1016/j.jece.2014.09.004

Google Scholar

[4] A. Abejón, A. Garea, A. Irabien, Arsenic removal from drinking water by reverse osmosis: Minimization of costs and energy consumption, Sep. Purif. Technol. 144 (2015) 46-53.

DOI: 10.1016/j.seppur.2015.02.017

Google Scholar

[5] X.P. Pei, L. Gan, Z.H. Tong, H.P. Gao, S.Y. Meng, W.L. Zhang, P.X. Wang, Y.S. Chen, Robust cellulose-based composite adsorption membrane for heavy metal removal, J. Hazard. Mater. 406 (2021) 124746.

DOI: 10.1016/j.jhazmat.2020.124746

Google Scholar

[6] W.J. Wang, Z.L. Xu, X.X. Zhang, W. Andreas, S. En, Y. Qin, X.P. Zhao, B.C. Zhou, L.X.Y. Li, Rapid and efficient removal of organic micropollutants from environmental water using a magnetic nanoparticles-attached fluorographene-based sorbent, Chem. Eng. J. 343 (2018) 61-68.

DOI: 10.1016/j.cej.2018.02.101

Google Scholar

[7] D. Kołodyńska, J. Krukowska, P. Thomas, Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon, Chem. Eng. J. 307 (2017) 353-363.

DOI: 10.1016/j.cej.2016.08.088

Google Scholar

[8] L.G. Ching, S. Sumathi, J.K. Mohammed, A. Waseem, Adsorptive behaviour of palm oil mill sludge biochar pyrolyzed at low temperature for copper and cadmium removal, J. Environ. Manage. 237 (2019) 281-288.

DOI: 10.1016/j.jenvman.2018.12.103

Google Scholar

[9] X. Wei, X.Y. Zhang, J.J. Chen, W.X. Zou, F. He, X. Hu, C.W. Daniel, Y. S.O. Tsang, B. Gao, Biochar technology in wastewater treatment: A critical review, Chemosphere. 252 (2020) 126539.

DOI: 10.1016/j.chemosphere.2020.126539

Google Scholar

[10] Z.X. Xiao, L.J. Zhang, L. Wu, D. Chen, Adsorptive removal of Cu(II) from aqueous solutions using a novel macroporous bead adsorbent based on poly(vinyl alcohol)/sodium alginate/KMnO4 modified biochar, J. Taiwan. Inst. Chem. E. 102 (2019) 110-117.

DOI: 10.1016/j.jtice.2019.05.010

Google Scholar

[11] Y.M. Hao, M. Chen, Z.B. Hu, Effective removal of Cu (II) ions from aqueous solution by amino-functionalized magnetic nanoparticles, J. Hazard. Mater. 184 (2010) 392-399.

DOI: 10.1016/j.jhazmat.2010.08.048

Google Scholar

[12] V. Antochshuk, M. Jaroniec, 1-Allyl-3-propylthiourea modified mesoporous silica for mercury removal, Chem. Commun. (2002) 258-259.

DOI: 10.1039/b108789d

Google Scholar

[13] Y.M. Ren, X.Z. Wei, M.L. Zhang, Adsorption character for removal Cu(II) by magnetic Cu(II) ion imprinted composite adsorbent, J. Hazard. Mater. 158 (2008) 14-22.

DOI: 10.1016/j.jhazmat.2008.01.044

Google Scholar

[14] Y.W. Chen, J.L. Wang, Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu(II) removal, Chem. Eng. J. 168 (2011) 286-292.

Google Scholar

[15] O. Ozay, S. Ekici, Y. Baran, N. Aktas, N. Sahiner, Removal of toxic metal ions with magnetic hydrogels, Water. Res. 43 (2009) 4403-4411.

DOI: 10.1016/j.watres.2009.06.058

Google Scholar

[16] P. Lu, Y.H. Chen, F.W. Wang, Synthesis of nanostructured M/Fe3O4 (M = Ag, Cu) composites using hexamethylentetramine and their electrocatalytic properties, Mater. Chem. Phys. 134 (2012) 177-182.

DOI: 10.1016/j.matchemphys.2012.02.048

Google Scholar

[17] D. Wan, W.B. Li, G.H. Wang, L.L. Lu, X.B. Wei, Degradation of p-Nitrophenol using magnetic Fe0/Fe3O4/Coke composite as a heterogeneous Fenton-like catalyst, Sci. Total. Environ. 574 (2017) 1326-1334.

DOI: 10.1016/j.scitotenv.2016.08.042

Google Scholar

[18] W.J. Han, X.Z. Shao, Q. Zhang, G.H. Tian, Preparation of mesoporous magnetic Fe2O3, nanoparticle and its application for organic dyes removal, J. Mol. Liq. 248 (2017) 13-18.

DOI: 10.1016/j.molliq.2017.10.026

Google Scholar

[19] Z.G. Liu, F.S. Zhang, Removal of copper (II) and phenol from aqueous solution using porous carbons derived from hydrothermal chars, Desalination. 267 (2010) 101-106.

DOI: 10.1016/j.desal.2010.09.013

Google Scholar

[20] K. Kadirvelu, K. Thamaraiselvi, C. Namasivayam, Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste, Bioresour. Technol. 76 (2001) 63–65.

DOI: 10.1016/s0960-8524(00)00072-9

Google Scholar

[21] K. Kadirvelu, P. Senthilkumar, K. Thamaraiselvi, V. Subburam, Activated carbon prepared from biomass as adsorbent: elimination of Ni(II) from aqueous solution, Bioresour. Technol. 81 (2001) 87–90.

DOI: 10.1016/s0960-8524(01)00093-1

Google Scholar

[22] M. Zakaria, S.B. Salima, L. Noureddine, E. Abdelhamid, Magnetic monolithic polymers prepared from high internal phase emulsions and Fe3O4 triazole-functionalized nanoparticles for Pb2+, Cu2+ and Zn2+ removal, React. Funct. Polym. 155 (2020) 104693.

DOI: 10.1016/j.reactfunctpolym.2020.104693

Google Scholar

[23] A.I.A. Sherlala, A.A.A. Raman, M.M. Bello, A. Asghar, A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption, Chemosphere. 193 (2018) 1004-1017.

DOI: 10.1016/j.chemosphere.2017.11.093

Google Scholar

[24] S. Guo, G.K. Zhang, Y.D. Guo, J.C. Yu, Graphene oxide–Fe2O3 hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants, Carbon. 60 (2013) 437-444.

DOI: 10.1016/j.carbon.2013.04.058

Google Scholar

[25] Z. Liang, W.C. Xu, L.M. Chen, Degradation of phenol using Fe3O4-GO nanocomposite as a heterogeneous photo-fenton catalyst, Sep. Purif. Technol. 171 (2016) 80-87.

DOI: 10.1016/j.seppur.2016.07.020

Google Scholar

[26] M.D. Rajesh, R.M. Pratap, S.R. Sadhana, A.G. Bhole, S.D. Ashwinkumar, R.D. Shubham, Removal of arsenic(III) from water by magnetic binary oxide particles(MBOP): Experimental studies on fixed bed column, J. Hazard. Mater. 322 (2016) 469-478.

DOI: 10.1016/j.jhazmat.2016.09.075

Google Scholar

[27] Q.Q. Peng, Y.G. Liu, G.M. Zeng, W.H. Xu, C.P. Yang, J.J. Zhang, Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosancoated magnetic nanoparticles from aqueous solution, J. Hazard. Mater. 177 (2010) 676-682.

DOI: 10.1016/j.jhazmat.2009.12.084

Google Scholar

[28] T. Huang, J. Dai, J.H. Yang, N. Zhang, Y. Wang, Z.W. Zhou, Polydopamine coated graphene oxide aerogels and their ultrahigh adsorption ability, Diam. Relat. Mater. 86 (2018) 117-127.

DOI: 10.1016/j.diamond.2018.04.015

Google Scholar

[29] Y. Zhu, W.H. Fan, T.T. Zhou, X.M. Li, Removal of chelated heavy metals from aqueous solution: A review of current methods and mechanisms. Sci. Total. Environ. 678 (2019) 253-266.

DOI: 10.1016/j.scitotenv.2019.04.416

Google Scholar

[30] A.E. Burakov, E.V. Galunin, I.V. Burakova, A.E. Kucherova, A. Shilpi, A.G. Tkachev, V.K. Gupta, Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review, Ecotox. Environ. Safe. 148 (2018) 702-712.

DOI: 10.1016/j.ecoenv.2017.11.034

Google Scholar

[31] P.T.L. Huong, T.V. Son, V.N. Pham, L.T. Tam, A.T. Le, Microstructure and Chemo-Physical characterizations of functional graphene oxide-iron oxide-silver ternary nanocomposite synthesized by one-pot hydrothermal method, J. Nanosci. Nanotechnol. 18 (2018) 5591-5599.

DOI: 10.1166/jnn.2018.15406

Google Scholar

[32] M.C. Liu, T. Wen, C.L. Chen, J. Hu, J. Li, X.K. Wang, Synthesis of porous Fe3O4 hollow microspheres/graphene oxide composite for Cr(VI) removal, Dalton. T. 42 (2013) 14710-14717.

DOI: 10.1039/c3dt50955a

Google Scholar

[33] U. Jinendra, D. Bilehal, B.M. Nagabhushana, K.S.J. Kumara, S.P. Kollur, Nano-catalytic behavior of highly efficient and regenerable mussel-inspired Fe3O4@CFR@GO and Fe3O4@CFR@TiO2 magnetic nanospheres in the reduction of Evans blue dye, Heliyon. 7 (2021) 6070-6079.

DOI: 10.1016/j.heliyon.2021.e06070

Google Scholar

[34] L. Sun, F. Bunshi, Mass production of graphene oxide from expanded graphite, Mater. Lett. 109 (2013) 1227-1233.

Google Scholar

[35] Y.F. Liu, Y.Y. Li, X. Zhao, W.D. Chi, C.Y. Yu, Y. Xiang, Effect of magnetite nanoparticles on dye absorption properties of magnetite@carbon composites, B. Mater. Sci. 40 (2017) 367-373.

DOI: 10.1007/s12034-017-1380-6

Google Scholar

[36] T. Mayr, D. Wencel, T. Werner, Fluorimetic determination of copper(II) in aqueous solution using lucifer yellow CH as selective metal reagent, Fresenius J Anal Chem. 60 (2001) 156-162.

DOI: 10.1007/s002160100891

Google Scholar

[37] C. Bing, K.G. Ngoh, S.C. Lian, Determination of copper by zeolite molecular sieve modified electrode, Electrochimca Acta. 42 (1997) 595-604.

DOI: 10.1016/s0013-4686(96)00204-6

Google Scholar

[38] J.J. Pinto, C. Moreno, M.G. Vargas, A simple and very sensitive spectrophotometric method for the direct determination of copper ions, Anal Bioanal Chem. 373 (2002) 844-848.

DOI: 10.1007/s00216-002-1403-y

Google Scholar

[39] M. Darj, E.R. Malinowski, Determination of the formation constant of the copper chelate of beta-cyclodextrin by spectrophotometric titration with ethylenediaminetetraacetic acid using window factor analysis, Appl Spectrosc. 56 (2002) 257-265.

DOI: 10.1366/0003702021954520

Google Scholar

[40] K. Fujimura, T. Odake, H. Takiguchi, N. Watanabe, T. Sawada, Flow injection spectrophotometric determination of sub-mg dm-3 silver(I) in a strongly acidic solution containing concentrated copper(II) using a pyridylazo reagent, Anal Sci. 27 (2012) 1197-1201.

DOI: 10.2116/analsci.27.1197

Google Scholar

[41] M.W. Liu, Z.Z. Jia, Y.F. Liu, High catalytic activity of Fe3-xCuxO4/graphene oxide (0≤x≤0.1) nanocomposites as heterogeneous Fenton catalysts for p-nitrophenol degradation, Water. Air. Soil. Pollut. 230 (2019) 64-79.

DOI: 10.1007/s11270-019-4121-1

Google Scholar

[42] L.H. Ai, C.Y. Zhang, Z.L. Chen, Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite, J. Hazard. Mater. 192 (2011) 1515-1524.

DOI: 10.1016/j.jhazmat.2011.06.068

Google Scholar

[43] J.Z. Wang, C. Zhong, D. Wexler, N.H. Idris, Z.X. Wang, L.Q. Chen, H.K. Liu, Graphene-Encapsulated Fe3O4 nanoparticles with 3D laminated structure as superior anode in lithium ion batteries, Eur. J. Med. Chem. 17 (2011) 661–667.

DOI: 10.1002/chem.201001348

Google Scholar

[44] G.Y. He, W.F. Liu, X.Q. Sun, Q. Chen, X. Wang, H.Q. Chen, Fe3O4@graphene oxide composite: A magnetically separable and efficient catalyst for the reduction of nitroarenes, Mater. Res. Bull. 48 (2013) 1885–1890.

DOI: 10.1016/j.materresbull.2013.01.038

Google Scholar

[45] X.C. Sun, A. Gutierrez, M.J. Yacaman, X.L. Dong, S.R. Jin, Investigations on magnetic properties and structure for carbon encapsulated nanoparticles of Fe, Co, Ni, Mater. Sci. Eng., A. 286 (2000) 157-160.

DOI: 10.1016/s0921-5093(00)00628-6

Google Scholar

[46] P.J.F. Harris, S.C. Tsang, A simple technique for the synthesis of filled carbon nanoparticles, Chem. Phys. Lett. 293 (1998) 53-58.

Google Scholar

[47] Y. Lu, Z.P. Zhu, Z.Y. Liu, Carbon-encapsulated Fe nanoparticles from detonation-induced pyrolysis of ferrocene, Carbon. 43 (2005) 369-374.

DOI: 10.1016/j.carbon.2004.09.020

Google Scholar

[48] B. Ali, S. Aamer, S. Muhammad, I. Shahid, I.B. Muhammad, W. Muhammad, N.H. Muhammad, A. Nasir, Eco-friendly synthesis of magnetite (Fe3O4) nanoparticles with tunable size: Dielectric, magnetic, thermal and optical studies, Mater. Chem. Phys. 198 (2017) 229–235.

Google Scholar

[49] M.Z. Kassaee, E. Motamedi, M. Majdi, Magnetic Fe3O4-graphene oxide/polystyrene: Fabrication and characterization of a promising nanocomposite, Chem. Eng. J. 172 (2011) 540-549.

DOI: 10.1016/j.cej.2011.05.093

Google Scholar

[50] X.J. Zhu, Y.W. Zhu, S. Murali, M.D. Stoller, R.S. Ruoff, Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries, ACS Nano. 5 (2011) 3333-3338.

DOI: 10.1021/nn200493r

Google Scholar

[51] G.K. Zhang, Y.Y. Gao, Y.L. Zhang, Y.D. Guo, Fe2O3-pillared rectorite as an efficient and stable Fenton-Like Heterogeneous catalyst for photodegradation of organic contaminants, Environ. Sci. Technol. 44 (2010) 6384-6389.

DOI: 10.1021/es1011093

Google Scholar

[52] A. Amini, M. Khajeh, A.R. Oveisi, S. Daliran, M.M. Ghaffari, H.S. Delarami, A porous multifunctional and magnetic layered graphene oxide/3D mesoporous MOF nanocomposite for rapid adsorption of uranium(VI) from aqueous solutions, J. Ind. Eng. Chem. 93 (2020) 322-332.

DOI: 10.1016/j.jiec.2020.10.008

Google Scholar

[53] W.J. Zhang, Q.C. Feng, B.B. Zhang, Y.L. Wang, Y.L. Fei, M. Kou, Z.X. Zhang, Y.Y. Shen, X.Y. Du, Nitrogen-Doped mesoporous carbons bearing Fe3O4 as adsorbent for effective Ag(I) removal, Nano. 15 (2020) 13.

DOI: 10.1142/s1793292020501349

Google Scholar

[54] A. Gisya, A. Abdolhamid, A. Jhaleh, R. Soraya, S. Gaurav, Polyamine-modified magnetic graphene oxide surface: Feasible adsorbent for removal of dyes, J. Mol. Liq. 289 (2019) 111118.

DOI: 10.1016/j.molliq.2019.111118

Google Scholar

[55] Z.H. Lu, Z.Q. Hao, J. Wang, L. Chen, Efficient removal of europium from aqueous solutions using attapulgite-iron oxide magnetic composites, J. Ind. Eng. Chem. 34 (2015) 374-381.

DOI: 10.1016/j.jiec.2015.12.013

Google Scholar

[56] J. Hu, M.C.L. Irene, G.H. Chen, Comparative study of various magnetic nanoparticles for Cr(VI) removal, Sep. Purif. Technol. 56 (2007) 249-256.

Google Scholar

[57] N.A. Zubir, C. Yacou, J. Motuzas, X.W. Zhang, C.J.C. Diniz, Structural and functional investigation of graphene oxide-Fe3O4 nanocomposites for the heterogeneous Fenton-like reaction, Sci. Rep. 4 (2014) 101-104.

DOI: 10.1038/srep04594

Google Scholar

[58] T.L. Hou, L.G. Yan, J. Li, Y.T. Yang, L.X. Shan, X. Meng, X.G. Li, Y.X. Zhao, Adsorption performance and mechanistic study of heavy metals by facile synthesized magnetic layered double oxide/carbon composite from spent adsorbent, Chem. Eng. J. 384 (2020) 123331.

DOI: 10.1016/j.cej.2019.123331

Google Scholar

[59] H.J. Zhang, Q. Chang, Y. Jiang, H.L. Li, Y.H. Yang, Synthesis of KMnO4-treated magnetic graphene oxide nanocomposite (Fe3O4@GO/MnOx) and its application for removing of Cu2+ ions from aqueous solution, Nanotechnology. 29 (2018) 135706.

DOI: 10.1088/1361-6528/aaaa2f

Google Scholar

[60] Y.C. Wu, G.P. Jiang, Z.P. Cano, G.H. Liu, W.W. Liu, K. Feng, G. Lui, Z.S. Zhang, Z.W. Chen, Highly efficient removal of suspended solid pollutants from wastewater by magnetic Fe3O4-Graphene oxides nanocomposite. Chemistry. Sel. 3 (2018) 11643-11648.

DOI: 10.1002/slct.201802148

Google Scholar

[61] L. Yu, J.D. Chen, Z. Liang, W.C. Xu, L.M. Chen, D.Q. Ye, Degradation of phenol using Fe3O4-GO nanocomposite as a heterogeneous photo-fenton catalyst, Sep. Purif. Technol. 171 (2016) 80-87.

DOI: 10.1016/j.seppur.2016.07.020

Google Scholar

[62] Y.F. Lin, H.W. Chen, K.L. Lin, B.Y. Chen, C. Chiou, Application of magnetic particles modified with amino groups to adsorb copper ions in aqueous solution, J. Environ. Sci. 23 (2011) 44-50.

DOI: 10.1016/s1001-0742(10)60371-3

Google Scholar