Synthesis of Silver Nanoparticles Using Sideritis montana L. Leaf Extract: Characterization, Catalytic Degradation of Methylene Blue and Antioxidant Activity

Article Preview

Abstract:

Nanotechnology is arising as a fast-developing research discipline with many usages areas. The silver nanoparticles synthesis (sm-AgNPs) is accomplished by reduction of silver ions in treatment with aqueous extract of Sideritis montana L. leaves. The colour change from yellow to dark brown confirmed the structures. The spectroscopic studies revealed the desired structure. In the UV-Vis spectrum, the maximum absorption was observed at 480 nm. The diffraction peaks (2θ) at the degrees of 38.14°, 44.29°, 64.48°, and 77.38° can correspond to 111, 200, 220, and 311 facets that indicates the nanostructure to be a face-centered cubic unit structure. The scanning electron microscope (SEM) and dynamic light scattering (DLS) analyses indicated that the synthesized nanoparticles were spherical with an average particle size of 36.42 nm. The zeta potential of sm-AgNPs was found as -35.2 mV which indicated the repulsion among nanoparticles and their stability. The peaks from Fourier transform infrared spectrometer (FTIR) were associated with the phenols, flavonoids, terpenoids, and alkaloids, indicating that the corresponding compounds might act as reducing agents. The photocatalytic effect of sm-AgNPs was examined by degradation of methylene blue and sm-AgNPs were able to degrade the dye by about 67% at 96 h.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-28

Citation:

Online since:

September 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Zafar, R. Rizvi, I. Mahmood, Biofabrication of silver nanoparticles from various plant extracts: blessing to nanotechnology, Intern. J. Environ. Anal. Chem. 99 (2019) 1434-1445.

DOI: 10.1080/03067319.2019.1622698

Google Scholar

[2] A. Waris, M. Din, A. Ali, S. Afridi, A. Baset, A.U. Khan, M. Ali, Green fabrication of Co and Co3O4 nanoparticles and their biomedical applications: A review, Open Life Sci. 16 (2021) 14-30.

DOI: 10.1515/biol-2021-0003

Google Scholar

[3] D. Zhang, X.-l. Ma, Y. Gu, H. Huang, G.-w. Zhang, Green Synthesis of Metallic Nanoparticles and Their Potential Applications to Treat Cancer, Front. Chem. 8 (2020) Article ID: 799.

DOI: 10.3389/fchem.2020.00799

Google Scholar

[4] D. Garg, A. Sarkar, P. Chand, P. Bansal, D. Gola, S. Sharma, S. Khantwal, R. Mehrotra, N. Chauhan, R.K. Bharti, Synthesis of silver nanoparticles utilizing various biological systems: mechanisms and applications—a review, Prog. Biomater. 9 (2020) 81-95.

DOI: 10.1007/s40204-020-00135-2

Google Scholar

[5] T.S. Alomar, N. AlMasoud, M.A. Awad, M.F. El-Tohamy, D.A. Soliman, An eco-friendly plant-mediated synthesis of silver nanoparticles: Characterization, pharmaceutical and biomedical applications, Mater. Chem. Phys. 249 (2020) Article ID: 123007.

DOI: 10.1016/j.matchemphys.2020.123007

Google Scholar

[6] N. Genc, I. Yildiz, R. Chaoui, R. Erenler, C. Temiz, M. Elmastas, Biosynthesis, characterization and antioxidant activity of oleuropein-mediated silver nanoparticles, Inorg. Nano-Met. Chem. 51 (2021) 411-419.

DOI: 10.1080/24701556.2020.1792495

Google Scholar

[7] F. Oke-Altuntas, I. Demirtas, A.R. Tufekci, S. Koldas, F. Gul, L. Behcet, H.I. Gecibesler, Inhibitory Effects of the Active Components Isolated from Satureja Boissieri Hausskn. Ex Boiss. On Human Cervical Cancer Cell Line, J. Food Biochem. 40 (2016) 499-506.

DOI: 10.1111/jfbc.12238

Google Scholar

[8] F. Oke-Altuntas, G. Kapche, J.L.N. Ouete, I. Demirtas, M.B. Koc, B.T. Ngadjui, Bioactivity evaluation of cudraxanthone I, neocyclomorusin and (9 beta h)-3 beta-acetoxylanosta-7,24-diene isolated from Milicia excelsa Welw. C. C. Berg (Moraceae), Med. Chem. Res. 25 (2016) 2250-2257.

DOI: 10.1007/s00044-016-1670-3

Google Scholar

[9] S. Zerrouki, S. Mezhoud, A. Sahin Yaglioglu, C. Bensouici, M. Nuri Atalar, I. Demirtas, S. Ameddah, R. Mekkiou, Antioxidant, anticancer activities, and HPLC-DAD analyses of the medicinal halophyte Limoniastrum guyonianum Dur. extracts, J. Res. Phar. 26 (2022) 598-608.

DOI: 10.29228/jrp.157

Google Scholar

[10] G. Topçu, R. Erenler, O. Çakmak, C.B. Johansson, C. Çelik, H.-B. Chai, J.M. Pezzuto, Diterpenes from the berries of Juniperus excelsa, Phytochemistry 50 (1999) 1195-1199.

DOI: 10.1016/s0031-9422(98)00675-x

Google Scholar

[11] F. Eser, M. Altun, I. Demirtas, L. Behcet, E. Aktas, Three new iridoids from the aerial parts of Nepeta teucriifolia Willd. and antiproliferative activities of extracts, Nat. Prod. Res. (2022) 1-10.

DOI: 10.1080/14786419.2022.2036148

Google Scholar

[12] A.S. Yaglioglu, D.G. Gurbuz, M. Dolarslan, I. Demirtas, First determination of anticancer, cytotoxic, and in silico ADME evaluation of secondary metabolites of endemic Astragalus leucothrix Freyn & Bornm, Turk. J. Chem. 46 (2022) 169-183.

DOI: 10.3906/kim-2104-23

Google Scholar

[13] I. Demirtas, R. Erenler, M. Elmastas, A. Goktasoglu, Studies on the antioxidant potential of flavones of Allium vineale isolated from its water-soluble fraction, Food Chem. 136 (2013) 34-40.

DOI: 10.1016/j.foodchem.2012.07.086

Google Scholar

[14] R. Kasimogullari, H. Duran, A.S. Yaghoglu, S. Mert, I. Demirtas, Design, synthesis, characterization, and antiproliferative activity of novel pyrazole-3-carboxylic acid derivatives, Monatsh. Chem. 146 (2015) 1743-1749.

DOI: 10.1007/s00706-015-1450-7

Google Scholar

[15] A. Güvenç, P. Houghton, H. Duman, M. Coşkun, P. Şahin, Antioxidant activity studies on selected Sideritis. species native to Turkey, Pharm. Biol. 43 (2005) 173-177.

DOI: 10.1080/13880200590919528

Google Scholar

[16] E. Yeşilada, G. Honda, E. Sezik, M. Tabata, T. Fujita, T. Tanaka, Y. Takeda, Y. Takaishi, Traditional medicine in Turkey. V. Folk medicine in the inner Taurus Mountains, J. Ethnopharmacol. 46 (1995) 133-152.

DOI: 10.1016/0378-8741(95)01241-5

Google Scholar

[17] C. Gabrieli, E. Kokkalou, A glucosylated acylflavone from Sideritis raeseri, Phytochemistry 29 (1990) 681-683.

DOI: 10.1016/0031-9422(90)85149-a

Google Scholar

[18] G. Topcu, A.C. Goren, T. Kilic, Y.K. Yildiz, G. Tumen, Diterpenes from Sideritis trojana, Nat. Prod. Lett. 16 (2002) 33-37.

Google Scholar

[19] N. Aligiannis, E. Kalpoutzakis, I. Chinou, S. Mitakou, E. Gikas, A. Tsarbopoulos, Composition and antimicrobial activity of the essential oils of five taxa of Sideritis from Greece, J. Agr. Food Chem. 49 (2001) 811-815.

DOI: 10.1021/jf001018w

Google Scholar

[20] N. Kirimer, K. Baser, B. Demirci, H. Duman, Essential oils of Sideritis species of Turkey belonging to the section Empedoclia, Chem. Nat. Compd. 40 (2004) 19-23.

DOI: 10.1023/b:conc.0000025458.00475.cf

Google Scholar

[21] A. Basile, F. Senatore, R. Gargano, S. Sorbo, M. Del Pezzo, A. Lavitola, A. Ritieni, M. Bruno, D. Spatuzzi, D. Rigano, Antibacterial and antioxidant activities in Sideritis italica (Miller) Greuter et Burdet essential oils, J. Ethnopharmacol. 107 (2006) 240-248.

DOI: 10.1016/j.jep.2006.03.019

Google Scholar

[22] N. Ezer, R. Vila, S. Cañigueral, T. Adzet, Essential oil composition of four Turkish species of Sideritis, Phytochemistry 41 (1996) 203-205.

DOI: 10.1016/0031-9422(95)00601-x

Google Scholar

[23] E. González-Burgos, M. Carretero, M. Gómez-Serranillos, Sideritis spp.: uses, chemical composition and pharmacological activities—a review, J. Ethnopharmacol. 135 (2011) 209-225.

DOI: 10.1016/j.jep.2011.03.014

Google Scholar

[24] B.M. Fraga, Phytochemistry and chemotaxonomy of Sideritis species from the Mediterranean region, Phytochemistry 76 (2012) 7-24.

DOI: 10.1016/j.phytochem.2012.01.018

Google Scholar

[25] F. Piozzi, M. Bruno, S. Rosselli, A. Maggio, The diterpenoids from the genus Sideritis, Stud. Nat. Prod. Chem. 33 (2006) 493-540.

DOI: 10.1016/s1572-5995(06)80033-5

Google Scholar

[26] K. Bekhouche, T. Ozen, S. Boussaha, S. Koldas, S. Yenigun, S. Lassed, I. Demirtas, F. Benayache, S. Benayache, D. Zama, Anti-oxidant, DNA-damage protection and anti-cancer properties of n-butanol extract of the endemic Perralderia coronopifolia, Bangladesh J. Pharmacol. 13 (2018) 82-89.

DOI: 10.3329/bjp.v13i1.34255

Google Scholar

[27] M.A. Demirci, Y. Ipek, F. Gul, T. Ozen, I. Demirtas, Extraction, isolation of heat-resistance phenolic compounds, antioxidant properties, characterization and purification of 5-hydroxymaltol from Turkish apple pulps, Food Chem. 269 (2018) 111-117.

DOI: 10.1016/j.foodchem.2018.06.147

Google Scholar

[28] R. Erenler, B. Meral, O. Sen, M. Elmastas, A. Aydin, O. Eminagaoglu, G. Topcu, Bioassay-guided isolation, identification of compounds from Origanum rotundifolium and investigation of their antiproliferative and antioxidant activities, Pharm. Biol. 55 (2017) 1646-1653.

DOI: 10.1080/13880209.2017.1310906

Google Scholar

[29] F. Oke-Altuntas, M. Altun, I. Demirtas, L. Behcet, A Comparative Study on Fatty Acid Compositions, Total Phenolic Contents, and Antioxidant Potentials of Various Extracts from Different Parts of Euphorbia chamaesyce L, Gazi Univ.J. Sci. 31 (2018) 677-685.

Google Scholar

[30] M. Vanaja, K. Paulkumar, M. Baburaja, S. Rajeshkumar, G. Gnanajobitha, C. Malarkodi, M. Sivakavinesan, G. Annadurai, Degradation of methylene blue using biologically synthesized silver nanoparticles, Bioinorg. Chem. Appl. 2014 (2014) Article ID 742346.

DOI: 10.1155/2014/742346

Google Scholar

[31] N. Genc, M. Elmastas, I. Telci, R. Erenler, Quantitative analysis of phenolic compounds of commercial basil cultivars (Ocimum basilicum L.) by LC-TOF-MS and their antioxidant effects, Int. J. Chem. Technol. 4 (2020) 179-184.

DOI: 10.32571/ijct.795629

Google Scholar

[32] P. Koysu, N. Genc, M. Elmastas, H. Aksit, R. Erenler, Isolation, identification of secondary metabolites from Salvia absconditiflora and evaluation of their antioxidative properties, Nat. Prod. Res. 33 (2019) 3592-3595.

DOI: 10.1080/14786419.2018.1488700

Google Scholar

[33] N. Genç, İ. Yıldız, T. Karan, Ö. Eminağaoğlu, R. Erenler, Antioxidant activity and total phenolic contents of Galanthus woronowii (Amaryllidaceae), Turk. J. Biodiv. 2 (2019) 1-5.

DOI: 10.38059/biodiversity.515111

Google Scholar

[34] B. Janeska, M. Stefova, K. Alipieva, Assay of flavonoid aglycones from species of the genus Sideritis (Lamiaceae) from Macedonia with HPLC UV DAD, Acta Pharm. 57 (2007) 371-377.

DOI: 10.2478/v10007-007-0030-8

Google Scholar

[35] E.N. Gecer, R. Erenler, C. Temiz, N. Genc, I. Yildiz, Green synthesis of silver nanoparticles from Echinacea purpurea (L.) Moench with antioxidant profile, Particul. Sci. Technol. 40 (2021) 50-57.

DOI: 10.1080/02726351.2021.1904309

Google Scholar

[36] H.D. Beyene, A.A. Werkneh, H.K. Bezabh, T.G. Ambaye, Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review, Sust. Mat. Technol. 13 (2017) 18-23.

DOI: 10.1016/j.susmat.2017.08.001

Google Scholar

[37] M. Shao, A. Peles, K. Shoemaker, Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity, Nano Lett. 11 (2011) 3714-3719.

DOI: 10.1021/nl2017459

Google Scholar

[38] M.I. Al-Zaban, M.A. Mahmoud, M.A. AlHarbi, Catalytic degradation of methylene blue using silver nanoparticles synthesized by honey, Saudi J. Biol. Sci. 28 (2021) 2007-2013.

DOI: 10.1016/j.sjbs.2021.01.003

Google Scholar

[39] V. Suvith, D. Philip, Catalytic degradation of methylene blue using biosynthesized gold and silver nanoparticles, Spectrochim. Acta A Mol. Biomol. Spectrosc. 118 (2014) 526-532.

DOI: 10.1016/j.saa.2013.09.016

Google Scholar

[40] B. Dag, Green synthesis, characterization, and antioxidant activity of silver nanoparticles using Stachys annua L. subsp. annua var. annua, Particul. Sci. Technol. 40 (2022) 512-520.

DOI: 10.1080/02726351.2021.1966689

Google Scholar

[41] R. Erenler, B. Dag, Biosynthesis of silver nanoparticles using Origanum majorana L. and evaluation of their antioxidant activity, Inorg. Nano-Met. Chem. 52 (2022) 485-492.

Google Scholar

[42] R. Erenler, E.N. Geçer, N. Genç, D. Yanar, Antioxidant activity of silver nanoparticles synthesized from Tagetes erecta L. leaves, Int. J. Chem. Technol. 5 (2021) 141-146.

DOI: 10.32571/ijct.1005275

Google Scholar

[43] E.N. Gecer, Green Synthesis of Silver Nanoparticles from Salvia aethiopis L. and Their Antioxidant Activity, J. Inorg. Organomet. Polym. Mater. 31 (2021) 4402-4409.

DOI: 10.1007/s10904-021-02057-3

Google Scholar

[44] N. Genc, Biosynthesis of silver nanoparticles using Origanum onites extract and investigation of their antioxidant activity, Particul. Sci. Technol. 39 (2021) 562-568.

DOI: 10.1080/02726351.2020.1786868

Google Scholar

[45] A.K. Mittal, A. Kaler, U.C. Banerjee, Free Radical Scavenging and Antioxidant Activity of Silver Nanoparticles Synthesized from Flower Extract of Rhododendron dauricum, Nano Biomed. Eng. 4 (2012) 118-124.

DOI: 10.5101/nbe.v4i3.p118-124

Google Scholar

[46] A. Wang, Y. Wang, C. Sun, C. Wang, B. Cui, X. Zhao, Z. Zeng, J. Yao, D. Yang, G. Liu, Fabrication, characterization, and biological activity of avermectin nano-delivery systems with different particle sizes, Nano. Res. Lett. 13 (2018) 1-7.

DOI: 10.1186/s11671-017-2405-1

Google Scholar

[47] C.-N. Lok, C.-M. Ho, R. Chen, Q.-Y. He, W.-Y. Yu, H. Sun, P.K.-H. Tam, J.-F. Chiu, C.-M. Che, Silver nanoparticles: partial oxidation and antibacterial activities, J. Biol. Inorg. Chem. 12 (2007) 527-534.

DOI: 10.1007/s00775-007-0208-z

Google Scholar