Mechanism Study of Green Synthesis and Antibacterial Attribute of Polyalthia longifolia Based Gold Nanoparticles

Article Preview

Abstract:

Drug resistant microbial strains are becoming continuous dilemma for researchers; hence, some alternates are required to combat this issue. In this way, nanotechnology is fascinating researchers to put forward a step in order to synthesize metals nanoparticles via adopting an ecofriendly, facile, and quick approach using medicinal plants. By means of aqueous extract of Polyalthia longifolia (AEPl), gold nanoparticles (AuPl) were synthesized for the mechanism study of synthesis and antibacterial bahavior. The reddish colored solution was an indicative clue of synthesis showing surface plasmon band at 540nm using UV/Visble spectroscopy. Various functional groups in the extract were identified which participated in the reduction of metal ions to metallic form as indicated from the Fourier Transform Infrared (FTIR) spectra of AuPl. Moving ahead, the synthesized AuPl were characterized through Transmission Electron Microscopy (TEM) showed spherical shape with more or less 50nm size. Besides, Scanning Electron Microscopy (SEM) study revealed some aggregates formation. Further, structural characterization via X-Rays Diffractometry (XRD) displayed crystallline nature of these nanoparticles. Finally, Energy Dispersive X-rays (EDX) analysis described their metallic form. The antibacterial activity at increased concentration when measured; AuPl showed 15 and 18mm bacterial growth inhibition zones against Escherichia coli and Bacillus subtilis at 100μg/mL concentration respectively. In addition, significant least minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of AuPl against these microbes were also observed. In the light of the above knowledge, it is inferred that the biogenic AuPl exhibit strong antibacterial potential enabling them to be a good substitute of antibiotics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-16

Citation:

Online since:

September 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Fatima, M. Priya, L. Indurthi, V. Radhakrishnan, R. Sudhakaran, Biosynthesis of silver nanoparticles using red algae Portieria hornemannii and its antibacterial activity against fish pathogens, Microbial Pathogenesis 138 (2020) 103780. https://doi.org/10.1016/j.micpath. 2019.103780.

DOI: 10.1016/j.micpath.2019.103780

Google Scholar

[2] S. Pirtarighat, M. Ghannadnia, S. Baghshahi, Biosynthesis of silver nanoparticles using Ocimum basilicum cultured under controlled conditions for bactericidal application, Materials Science & Engineering C 98 (2019) 250–255. https://doi.org/10.1016/j.msec.2018.12.090.

DOI: 10.1016/j.msec.2018.12.090

Google Scholar

[3] Z. Bao, C.Q. Lan, Advances in biosynthesis of noble metal nanoparticles mediated by photosynthetic organisms—A review, Colloids and Surfaces B: Biointerfaces 184 (2019) 110519. https://doi.org/10.1016/j.colsurfb.2019.110519.

DOI: 10.1016/j.colsurfb.2019.110519

Google Scholar

[4] M. Manikandakrishnan, S. Palanisamy, M. Vinosha, B. Kalanjiaraja, S. Mohandoss, R. Manikandan, M. Tabarsa, S.G. Youb, N.M. Prabhua, Facile green route synthesis of gold nanoparticles using Caulerpa racemosa for biomedical applications, Journal of Drug Delivery Science and Technology 54 (2019) 101345. https://doi.org/10.1016/j.jddst.2019.101345.

DOI: 10.1016/j.jddst.2019.101345

Google Scholar

[5] V. Soni, P. Raizada, P. Singh, H.N. Cuong, Rangabhashiyam, A. Saini, R.V. Saini, Q.V. Le, A.K. Nadda, T.T. Le, V.H. Nguy, Sustainable and green trends in using plant extracts for the synthesis of biogenic metal nanoparticles toward environmental and pharmaceutical advances: A review, Environmental Research 202 (2021) 111622. https://doi.org/10.1016/j.envres. 2021.111622.

DOI: 10.1016/j.envres.2021.111622

Google Scholar

[6] R. Zia, M. Riaz, N. Farooq, A. Qamar, S. Anjum, Facile green route synthesis of gold nanoparticles using Caulerpa racemosa for biomedical applications, Materials Research Express 5 (2018) 075012–0750110. https://doi.org/10.1016/j.jddst.2019.101345.

DOI: 10.1088/2053-1591/aacf70

Google Scholar

[7] F. Behzad, S.M. Naghib, M.A.J Kouhbanani, S.N. Tabatabaei, Y. Zare, K.Y. Rhee, An overview of the plant-mediated green synthesis of noble metal nanoparticles for antibacterial applications, Journal of industrial and engineering chemistry 94 (2021) 92-104. https://doi.org/10.1016/j.jiec.2020.12.005.

DOI: 10.1016/j.jiec.2020.12.005

Google Scholar

[8] M.J.H. Dowlath, S.A. Musthafa, S.B.M. Khalith, S. Varjani, S.K. A.M. Arunachalam, K.D. Arunachalam, M. Chandrasekaran, S.W. Chang, W.J. Chung, B. Ravindran, Comparison of characteristics and biocompatibility of green synthesized iron oxide nanoparticles with chemical synthesized nanoparticles, Environmental Research 201 (2021), 111585.https://doi.org/10.1016/j.envres.2021.111585.

DOI: 10.1016/j.envres.2021.111585

Google Scholar

[9] M.A. Yassin, A.M. Elgorban, A.E.R.M.A. Samawaty, B.M.A. Almunqedhi, Biosynthesis of silver nanoparticles using Penicillium verrucosum and analysis of their antifungal activity, Saudi Journal of Biological Sciences 28 (2021) 2123-2127. https://doi.org/10.1016/j.sjbs.2021.01.063.

DOI: 10.1016/j.sjbs.2021.01.063

Google Scholar

[10] P. Nikolaos, C.E. Matthew, H. Louise, Room temperature bio production, isolation and anti-microbial properties of stable elemental copper nanoparticles, New Biotechnology 40 (2018) 275–281.

DOI: 10.1016/j.nbt.2017.10.002

Google Scholar

[11] S. Naraginti, Y. Li, Preliminary investigation of catalytic, antioxidant, anticancer and bactericidal activity of green synthesized silver and gold nanoparticles using Actinidia deliciosa, Journal of Photochemistry and Photobiology B Biology 170 (2017) 225–234.

DOI: 10.1016/j.jphotobiol.2017.03.023

Google Scholar

[12] D. Baruah, M. Goswami, R.N.S. Yadav, A. Yadav, A.M. Das, Biogenic synthesis of gold nanoparticles and their application in photocatalytic degradation of toxic dyes, Journal of Photochemistry and Photobiology B Biology 186 (2018) 51–58. https://doi.org/10.1016/j.jphotobiol.2018.07.002.

DOI: 10.1016/j.jphotobiol.2018.07.002

Google Scholar

[13] S.O. Aisida, K. Ugwu, P.A. Akpa, A.C. Nwanya, U. Nwankwo, S.S. Botha, P.M. Ejikeme, I. Ahmad, M. Maaza, F.I. Ezema, Biogenic synthesis and antibacterial activity of controlled silver nanoparticles using an extract of Gongronema Latifolium, Materials Chemistry and Physics 237 (2019) 121859. https://doi.org/10.1016/j.matchemphys.2019.121859.

DOI: 10.1016/j.matchemphys.2019.121859

Google Scholar

[14] N. Zikalala, K. Matshetshe, S. Parani, O.S. Oluwafemi, Biosynthesis protocols for colloidal metal oxide nanoparticles, Nano-Structures & Nano-Objects 16 (2018) 288–299. https://doi.org/10.1016/j.nanoso.2018.07.010.

DOI: 10.1016/j.nanoso.2018.07.010

Google Scholar

[15] S. Ahmed, Annu, S.A. Chaudhry, S. Ikram, A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry, Journal of Photochemistry and Photobiology B Biology 166 (2017) 272–284. https://doi.org/10.1016/j.jphotobiol.2016.12.011.

DOI: 10.1016/j.jphotobiol.2016.12.011

Google Scholar

[16] P. Basnet, T.I. Chanu, D. Samanta, S. Chatterjee, A review on bio-synthesized zinc oxide nanoparticles using plant extracts as reductants and stabilizing agents, Journal of Photochemistry & Photobiology B Biology 183 (2018) 201–221. https://doi.org/10.1016/j.jphotobiol.2018.04.036.

DOI: 10.1016/j.jphotobiol.2018.04.036

Google Scholar

[17] M. Mosaviniya, T. Kikhavani, M. Tanzifi, M.T. Yaraki, P. Tajbakhsh, A. Lajevardi, Facile green synthesis of silver nanoparticles using Crocus Haussknechtii Bois bulb extract: Catalytic activity and antibacterial properties, Colloid and Interface Science Communications 33 (2019) 100211. https://doi.org/10.1016/j.colcom.2019.100211.

DOI: 10.1016/j.colcom.2019.100211

Google Scholar

[18] M.P. Patil, R.D. Singhc, P.B. Koli, K.T. Patil, B.S. Jagdale, A.R. Tipare, G.D. Kim, Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource, Microbial Pathogenesis 121 (2018) 184–189.

DOI: 10.1016/j.micpath.2018.05.040

Google Scholar

[19] N.A. Ghani, N. Ahmat, N.H. Ismail, I. Zakaria, N.K.N.A. Zawawi, Chemical constituents and cytotoxic activity of Polyalthia cauliflora var. cauliflora, Research Journal of Medicinal Plant, 6 (2012) 74-82.

DOI: 10.3923/rjmp.2012.74.82

Google Scholar

[20] C. Lavanya, B.G. Rao, D. Ramadevi, Phytochemical and pharmacological studies on Polyalthia longifolia, International Journal of Pharmaceutical Science and Research 3 (2018) 01-07.

Google Scholar

[21] N. Dileep, S. Junaid, K.N. Rakesh, T.R. Kekuda, A.S. Nawaz, Antifungal activity of leaf and pericarp extract of Polyalthia longifolia against pathogens causing rhizome rot of ginger, Journal of Science, Technology and Arts Research, 2 (2013) 56-59.

DOI: 10.4314/star.v2i1.98845

Google Scholar

[22] S.L. Jothy, Y.S. Choong, D. Saravanan, S. Deivanai, L.Y. Latha, S. Vijayarathna, S. Sasidharan, Polyalthia longifolia Sonn: an Ancient Remedy to Explore for Novel Therapeutic Agents, Research Journal of Pharmaceutical Biological and Chemical Sciences 4 (2013) 714-30.

Google Scholar

[23] U. Danlami, A. Rebecca, D.B. Machan, T.S Asuquo, Comparative study on the Antimicrobial activities of the Ethanolic extracts of Lemon grass and Polyalthia Longifolia, Journal of Applied Pharmaceutical Science 1 (2011) 174-176.

Google Scholar

[24] Saxena, J. and S. Rajeshwari. 2012. Evaluation of phytochemical constituents in conventional and nonconventional species of curcuma, International Research Journal of Pharmacy 3: 203–204.

Google Scholar

[25] R. Yuvarajan, D. Natarajan, C. Ragavendran, R. Jayavel. Photoscopic characterization of green synthesized silver nanoparticles from Trichosanthes tricuspidata and its antibacterial potential, Journal of Photochemistry and Photobiology B: Biology 149 (2015) 300–307.

DOI: 10.1016/j.jphotobiol.2015.04.032

Google Scholar

[26] T.S. Singh, I.T. Phucho, T.B. Singh. Phytochemical evaluation, determination of total terpenoid content on the rhizome of curcuma amada, World Journal of Pharmaceutical Research 4 (2015) 2286–2294.

Google Scholar

[27] J.T. Pierson, G.R. Monteith, S.J.R. Thomson,  R.G. Dietzgen, M.J. Gidley, P.N. Shaw. Phytochemical extraction, characterisation and comparative distribution across four mango (Mangifera indica L.) fruit varieties, Food Chemistry 149 (2014) 253–263.

DOI: 10.1016/j.foodchem.2013.10.108

Google Scholar

[28] A. Mathur, S.K. Verma, R. Purohit, V. Gupta, V.K. Dua, G.B.K.S. Prasad, D. Mathur, S.K. Singh, S. Singh. Evaluation of in vitro antimicrobial and antioxidant activities of peel and pulp of some citrus fruits, Journal of Biotechnology and Biotherapeutics 2 (2011) 1–17.

Google Scholar

[29] P. Logeswari, S. Silambarasan, J. Abraham. Ecofriendly synthesis of silver nanoparticles from commercially available plant powders and their antibacterial properties, Scientia Iranica F 20 (2013) 1049–1054.

Google Scholar

[30] C.P. Devatha, A.K. Thalla, S.Y. Katte. Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water, Journal of Cleaner Production 139 (2016) 1425‒1435.

DOI: 10.1016/j.jclepro.2016.09.019

Google Scholar

[31] K. Elangovan, D. Elumalai, S. Anupriya, R. Shenbhagaraman, P.K. Kaleena, K. Murugesan. Phyto mediated biogenic synthesis of silver nanoparticles using leaf extract of Andrographis echioides and its bio-efficacy on anticancer and antibacterial activities, Journal of Photochemistry and Photobiology B: Biology 151 (2015) 118–124.

DOI: 10.1016/j.jphotobiol.2015.05.015

Google Scholar

[32] N. Akhtar, I.U. Haq, B. Mirza. Phytochemical analysis and comprehensive evaluation of antimicrobial and antioxidant properties of 61 medicinal plant species, Arabian Journal of Chemistry11 (2018) 1223‒1235.

DOI: 10.1016/j.arabjc.2015.01.013

Google Scholar

[33] N.S. Chavan, M.M. Patil, J.V. Borase, N.D. Magar. Phytochemical analysis an antimicrobial activity of Curcuma longa (rhizome extract) against human pathogens, Bulletin of Environment, Pharmacology and Life Sciences 6 (2017) 541‒545.

Google Scholar

[34] R. Mythili, T. Selvankumar, P. Srinivasan, A. Sengottaiyan, J. Sabastinraj, F. Ameen, A. Al-Sabri, S.K. Kannan, M. Govarthanan, H. Kim, Biogenic synthesis, characterization and antibacterial activity of gold nanoparticles synthesized from vegetable waste, Journal of Molecular Liquids 262 (2018) 318–321. https://doi.org/10.1016/j.molliq.2018.04.087.

DOI: 10.1016/j.molliq.2018.04.087

Google Scholar

[35] F.Ö. Küp, S. Çoşkunçay, F. Duman, Biosynthesis of silver nanoparticles using leaf extract of Aesculus hippocastanum (horse chestnut): Evaluation of their antibacterial, antioxidant and drug releasesystem activities, Materials Science & Engineering C (2019) doi: https://doi.org/10.1016/j.msec.2019.110207.

DOI: 10.1016/j.msec.2019.110207

Google Scholar

[36] A.V. Ramesh, D.R. Devi, G.R. Battu, K. Basavaiah, Facile plant mediated synthesis of silver nanoparticles using an aqueous leaf extract of Ficus hispida Linn. f. for catalytic, antioxidant and antibacterial applications, South African Journal of Chemical Engineering 26 (2018) 25–34. https://doi.org/10.1016/j.sajce.2018.07.001.

DOI: 10.1016/j.sajce.2018.07.001

Google Scholar

[37] P. Dauthal, M. Mukhopadhyay, Antioxidant activity of phytosynthesized biomatrix-loaded noble metallic nanoparticles, Chinese Journal of Chemical Engineering 26 (2018) 1200–1208. https://doi.org/10.1016/j.cjche.2017.12.014.

DOI: 10.1016/j.cjche.2017.12.014

Google Scholar

[38] I. Öçsoy, A. Demırbas, E.S. McLamore, B. Altinsoy, N. Ildız, A. Baldemir, Green synthesis with incorporated hydrothermal approaches for silver nanoparticles formation and enhanced antimicrobial activity against bacterial and fungal pathogens, J Mol Lıq, cilt. 238 (2017) 263-269.https://doi.org/10.1016/j.molliq.2017.05.012.

DOI: 10.1016/j.molliq.2017.05.012

Google Scholar

[39] A. Bedi, B.R. Singh, S.K. Deshmukh, A. Adholeya, C.J. Barrow, An Aspergillus aculateus strain was capable of producing agriculturally useful nanoparticles via bioremediation of iron ore tailings, Journal of Environmental Management 215 (2018) 100-107. https://doi.org/10.1016/j.jenvman.2018.03.049.

DOI: 10.1016/j.jenvman.2018.03.049

Google Scholar

[40] V.B. Ravindran, A. Truskewycz, A.S. Ball, S.K. Soni, Detection of helminth ova genera using in-situ biosynthesis of gold nanoparticles, Methods X 6 (2019) 993–997. https://doi.org/10.1016/j.mex.2019.04.026.

DOI: 10.1016/j.mex.2019.04.026

Google Scholar

[41] N. Madubuonu, S.O. Aisida, A. Ali, I. Ahmad, T.k. Zhao, S. Botha, M.M. Fabian, I. Ezema, Biosynthesis of iron oxide nanoparticles via a composite of Psidium guavaja-Moringa oleifera and their antibacterial and photocatalytic study, Journal of Photochemistry & Photobiology, B: Biology 199 (2019) 111601. https://doi.org/10.1016/j.jphotobiol.2019.111601.

DOI: 10.1016/j.jphotobiol.2019.111601

Google Scholar

[42] F. Benakashani, A.R. Allafchian, S.A.H. Jalali, Biosynthesis of silver nanoparticles using Capparis spinosa L. leaf extract and their antibacterial activity, Karbala International Journal of Modern Science 2 (2016) 251–258. https://doi.org/10.1016/j.kijoms.2016.08.004.

DOI: 10.1016/j.kijoms.2016.08.004

Google Scholar

[43] C.G. Yuan, C. Huo, S. Yu, B. Gui, Biosynthesis of gold nanoparticles using Capsicum annuum var. grossum pulp extract and its catalytic activity, Physica E 85 (2017) 19–26. https://doi.org/10.1016/j.physe.2016.08.010.

DOI: 10.1016/j.physe.2016.08.010

Google Scholar

[44] L. Biao, S. Tan, X. Zhang, J. Gao, Z. Liu, Y. Fu, Synthesis and characterization of proanthocyanidins-functionalized Ag nanoparticles, Colloids and Surfaces B: Biointerfaces 169 (2018) 438–443. https://doi.org/10.1016/j.colsurfb.2018.05.050.

DOI: 10.1016/j.colsurfb.2018.05.050

Google Scholar

[45] S. Rajeshkumar, G. Rinitha, Nanostructural characterization of antimicrobial and antioxidant copper nanoparticles synthesized using novel Persea Americana seeds, Open Nano 3 (2018) 18–27. https://doi.org/10.1016/j.onano.2018.03.001.

DOI: 10.1016/j.onano.2018.03.001

Google Scholar

[46] I.K. Uddin, Ahmad, A.A. Khan, M.A. Kazmi, Synthesis of silver nanoparticles using Matricaria recutita (Babunah) plant extract and its study as mercury ions sensor, Sensing and Bio-Sensing Research 16 (2017) 62–67. https://doi.org/10.1016/j.sbsr.2017.11.005.

DOI: 10.1016/j.sbsr.2017.11.005

Google Scholar

[47] R. Prabhakar, S.R. Samadder, Jyotsana, Aquatic and terrestrial weed mediated synthesis of iron nanoparticles for possible application in wastewater remediation, Journal of Cleaner Production, 168 (2017) 1201–1210. https://doi.org/10.1016/j.jclepro.2017.09.063.

DOI: 10.1016/j.jclepro.2017.09.063

Google Scholar

[48] R. Javed, M. Ahmed, I. Haq, S. Nisa, M. Zia, PVP and PEG doped CuO nanoparticles are more biologically active: Antibacterial, antioxidant, antidiabetic and cytotoxic perspective, Materials Science and Engineering C 79 (2017) 108–115.

DOI: 10.1016/j.msec.2017.05.006

Google Scholar

[49] G. Franci, A. Falanga, S. Galdiero, L. Palomba, M. Rai, G. Morelli, M. Galdiero, Silver nanoparticles as potential antibacterial agents, Molecules 20 (2015) 8856–8874.

DOI: 10.3390/molecules20058856

Google Scholar

[50] S. Ahmed, M. Ahmed, B.L. Swami, S. Ikram, A review on plant extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise, Journal of Advanced Research 7 (2016) 17–28. http://dx.doi.org/10.1016/j.jare.2015.02.007.

DOI: 10.1016/j.jare.2015.02.007

Google Scholar

[51] B. Ajitha, Y.A.K. Reddy, P.S. Reddy, Biogenic nano-scale silver particles by Tephrosia purpurea leaf extract and their inborn antimicrobial activity, Spectro chim. Acta A 121 (2014) 164–172. https://doi.org/10.1016/j.saa.2013.10.077.

DOI: 10.1016/j.saa.2013.10.077

Google Scholar

[52] R. Banasiuk, M. Krychowiak, D. Swigon, W. Tomaszewicz, A. Michalak, A. Chylewska, M. Ziabka, M. Lapinski, B. Koscielska, M. Narajczyk, A. Krolicka, Carnivorous plants used for green synthesis of silver nanoparticles with broad-spectrum antimicrobial activity, Arabian Journal of Chemistry 11 (2017) 1–14. https://doi.org/10.1016/j.arabjc.2017.11.013.

DOI: 10.1016/j.arabjc.2017.11.013

Google Scholar

[53] S. Vimalraj, T.A. kumar, S. Saravanan, Biogenic gold nanoparticles synthesis mediated by Mangifera indica seed aqueous extracts exhibits antibacterial, anticancer and anti-angiogenic properties, Biomedicine & Pharmacotherapy 105 (2018) 440–448. https://doi.org/10.1016/j.biopha.2018.05.151.

DOI: 10.1016/j.biopha.2018.05.151

Google Scholar

[54] L.B. Roque, E.G. Espinosaa, M. Vieraa, N. Bellottia, Assessment of three plant extracts to obtain silver nanoparticles as alternative additives to control biodeterioration of coatings, International Biodeterioration & Biodegradation 141 (2019) 52–61. https://doi.org/10.1016/j.ibiod.2018.06.011.

DOI: 10.1016/j.ibiod.2018.06.011

Google Scholar

[55] W.R. Rolim, M.T. Pelegrino, B.D.A. Lima, L.S. Ferraz, F.N. Costa, J.S. Bernardes, T. Rodiguesa, M. Brocchi, Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity, Applied Surface Science 463 (2019) 66–74. https://doi.org/10.1016/j.apsusc.2018.08.203.

DOI: 10.1016/j.apsusc.2018.08.203

Google Scholar