[1]
R. Fatima, M. Priya, L. Indurthi, V. Radhakrishnan, R. Sudhakaran, Biosynthesis of silver nanoparticles using red algae Portieria hornemannii and its antibacterial activity against fish pathogens, Microbial Pathogenesis 138 (2020) 103780. https://doi.org/10.1016/j.micpath. 2019.103780.
DOI: 10.1016/j.micpath.2019.103780
Google Scholar
[2]
S. Pirtarighat, M. Ghannadnia, S. Baghshahi, Biosynthesis of silver nanoparticles using Ocimum basilicum cultured under controlled conditions for bactericidal application, Materials Science & Engineering C 98 (2019) 250–255. https://doi.org/10.1016/j.msec.2018.12.090.
DOI: 10.1016/j.msec.2018.12.090
Google Scholar
[3]
Z. Bao, C.Q. Lan, Advances in biosynthesis of noble metal nanoparticles mediated by photosynthetic organisms—A review, Colloids and Surfaces B: Biointerfaces 184 (2019) 110519. https://doi.org/10.1016/j.colsurfb.2019.110519.
DOI: 10.1016/j.colsurfb.2019.110519
Google Scholar
[4]
M. Manikandakrishnan, S. Palanisamy, M. Vinosha, B. Kalanjiaraja, S. Mohandoss, R. Manikandan, M. Tabarsa, S.G. Youb, N.M. Prabhua, Facile green route synthesis of gold nanoparticles using Caulerpa racemosa for biomedical applications, Journal of Drug Delivery Science and Technology 54 (2019) 101345. https://doi.org/10.1016/j.jddst.2019.101345.
DOI: 10.1016/j.jddst.2019.101345
Google Scholar
[5]
V. Soni, P. Raizada, P. Singh, H.N. Cuong, Rangabhashiyam, A. Saini, R.V. Saini, Q.V. Le, A.K. Nadda, T.T. Le, V.H. Nguy, Sustainable and green trends in using plant extracts for the synthesis of biogenic metal nanoparticles toward environmental and pharmaceutical advances: A review, Environmental Research 202 (2021) 111622. https://doi.org/10.1016/j.envres. 2021.111622.
DOI: 10.1016/j.envres.2021.111622
Google Scholar
[6]
R. Zia, M. Riaz, N. Farooq, A. Qamar, S. Anjum, Facile green route synthesis of gold nanoparticles using Caulerpa racemosa for biomedical applications, Materials Research Express 5 (2018) 075012–0750110. https://doi.org/10.1016/j.jddst.2019.101345.
DOI: 10.1088/2053-1591/aacf70
Google Scholar
[7]
F. Behzad, S.M. Naghib, M.A.J Kouhbanani, S.N. Tabatabaei, Y. Zare, K.Y. Rhee, An overview of the plant-mediated green synthesis of noble metal nanoparticles for antibacterial applications, Journal of industrial and engineering chemistry 94 (2021) 92-104. https://doi.org/10.1016/j.jiec.2020.12.005.
DOI: 10.1016/j.jiec.2020.12.005
Google Scholar
[8]
M.J.H. Dowlath, S.A. Musthafa, S.B.M. Khalith, S. Varjani, S.K. A.M. Arunachalam, K.D. Arunachalam, M. Chandrasekaran, S.W. Chang, W.J. Chung, B. Ravindran, Comparison of characteristics and biocompatibility of green synthesized iron oxide nanoparticles with chemical synthesized nanoparticles, Environmental Research 201 (2021), 111585.https://doi.org/10.1016/j.envres.2021.111585.
DOI: 10.1016/j.envres.2021.111585
Google Scholar
[9]
M.A. Yassin, A.M. Elgorban, A.E.R.M.A. Samawaty, B.M.A. Almunqedhi, Biosynthesis of silver nanoparticles using Penicillium verrucosum and analysis of their antifungal activity, Saudi Journal of Biological Sciences 28 (2021) 2123-2127. https://doi.org/10.1016/j.sjbs.2021.01.063.
DOI: 10.1016/j.sjbs.2021.01.063
Google Scholar
[10]
P. Nikolaos, C.E. Matthew, H. Louise, Room temperature bio production, isolation and anti-microbial properties of stable elemental copper nanoparticles, New Biotechnology 40 (2018) 275–281.
DOI: 10.1016/j.nbt.2017.10.002
Google Scholar
[11]
S. Naraginti, Y. Li, Preliminary investigation of catalytic, antioxidant, anticancer and bactericidal activity of green synthesized silver and gold nanoparticles using Actinidia deliciosa, Journal of Photochemistry and Photobiology B Biology 170 (2017) 225–234.
DOI: 10.1016/j.jphotobiol.2017.03.023
Google Scholar
[12]
D. Baruah, M. Goswami, R.N.S. Yadav, A. Yadav, A.M. Das, Biogenic synthesis of gold nanoparticles and their application in photocatalytic degradation of toxic dyes, Journal of Photochemistry and Photobiology B Biology 186 (2018) 51–58. https://doi.org/10.1016/j.jphotobiol.2018.07.002.
DOI: 10.1016/j.jphotobiol.2018.07.002
Google Scholar
[13]
S.O. Aisida, K. Ugwu, P.A. Akpa, A.C. Nwanya, U. Nwankwo, S.S. Botha, P.M. Ejikeme, I. Ahmad, M. Maaza, F.I. Ezema, Biogenic synthesis and antibacterial activity of controlled silver nanoparticles using an extract of Gongronema Latifolium, Materials Chemistry and Physics 237 (2019) 121859. https://doi.org/10.1016/j.matchemphys.2019.121859.
DOI: 10.1016/j.matchemphys.2019.121859
Google Scholar
[14]
N. Zikalala, K. Matshetshe, S. Parani, O.S. Oluwafemi, Biosynthesis protocols for colloidal metal oxide nanoparticles, Nano-Structures & Nano-Objects 16 (2018) 288–299. https://doi.org/10.1016/j.nanoso.2018.07.010.
DOI: 10.1016/j.nanoso.2018.07.010
Google Scholar
[15]
S. Ahmed, Annu, S.A. Chaudhry, S. Ikram, A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry, Journal of Photochemistry and Photobiology B Biology 166 (2017) 272–284. https://doi.org/10.1016/j.jphotobiol.2016.12.011.
DOI: 10.1016/j.jphotobiol.2016.12.011
Google Scholar
[16]
P. Basnet, T.I. Chanu, D. Samanta, S. Chatterjee, A review on bio-synthesized zinc oxide nanoparticles using plant extracts as reductants and stabilizing agents, Journal of Photochemistry & Photobiology B Biology 183 (2018) 201–221. https://doi.org/10.1016/j.jphotobiol.2018.04.036.
DOI: 10.1016/j.jphotobiol.2018.04.036
Google Scholar
[17]
M. Mosaviniya, T. Kikhavani, M. Tanzifi, M.T. Yaraki, P. Tajbakhsh, A. Lajevardi, Facile green synthesis of silver nanoparticles using Crocus Haussknechtii Bois bulb extract: Catalytic activity and antibacterial properties, Colloid and Interface Science Communications 33 (2019) 100211. https://doi.org/10.1016/j.colcom.2019.100211.
DOI: 10.1016/j.colcom.2019.100211
Google Scholar
[18]
M.P. Patil, R.D. Singhc, P.B. Koli, K.T. Patil, B.S. Jagdale, A.R. Tipare, G.D. Kim, Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource, Microbial Pathogenesis 121 (2018) 184–189.
DOI: 10.1016/j.micpath.2018.05.040
Google Scholar
[19]
N.A. Ghani, N. Ahmat, N.H. Ismail, I. Zakaria, N.K.N.A. Zawawi, Chemical constituents and cytotoxic activity of Polyalthia cauliflora var. cauliflora, Research Journal of Medicinal Plant, 6 (2012) 74-82.
DOI: 10.3923/rjmp.2012.74.82
Google Scholar
[20]
C. Lavanya, B.G. Rao, D. Ramadevi, Phytochemical and pharmacological studies on Polyalthia longifolia, International Journal of Pharmaceutical Science and Research 3 (2018) 01-07.
Google Scholar
[21]
N. Dileep, S. Junaid, K.N. Rakesh, T.R. Kekuda, A.S. Nawaz, Antifungal activity of leaf and pericarp extract of Polyalthia longifolia against pathogens causing rhizome rot of ginger, Journal of Science, Technology and Arts Research, 2 (2013) 56-59.
DOI: 10.4314/star.v2i1.98845
Google Scholar
[22]
S.L. Jothy, Y.S. Choong, D. Saravanan, S. Deivanai, L.Y. Latha, S. Vijayarathna, S. Sasidharan, Polyalthia longifolia Sonn: an Ancient Remedy to Explore for Novel Therapeutic Agents, Research Journal of Pharmaceutical Biological and Chemical Sciences 4 (2013) 714-30.
Google Scholar
[23]
U. Danlami, A. Rebecca, D.B. Machan, T.S Asuquo, Comparative study on the Antimicrobial activities of the Ethanolic extracts of Lemon grass and Polyalthia Longifolia, Journal of Applied Pharmaceutical Science 1 (2011) 174-176.
Google Scholar
[24]
Saxena, J. and S. Rajeshwari. 2012. Evaluation of phytochemical constituents in conventional and nonconventional species of curcuma, International Research Journal of Pharmacy 3: 203–204.
Google Scholar
[25]
R. Yuvarajan, D. Natarajan, C. Ragavendran, R. Jayavel. Photoscopic characterization of green synthesized silver nanoparticles from Trichosanthes tricuspidata and its antibacterial potential, Journal of Photochemistry and Photobiology B: Biology 149 (2015) 300–307.
DOI: 10.1016/j.jphotobiol.2015.04.032
Google Scholar
[26]
T.S. Singh, I.T. Phucho, T.B. Singh. Phytochemical evaluation, determination of total terpenoid content on the rhizome of curcuma amada, World Journal of Pharmaceutical Research 4 (2015) 2286–2294.
Google Scholar
[27]
J.T. Pierson, G.R. Monteith, S.J.R. Thomson, R.G. Dietzgen, M.J. Gidley, P.N. Shaw. Phytochemical extraction, characterisation and comparative distribution across four mango (Mangifera indica L.) fruit varieties, Food Chemistry 149 (2014) 253–263.
DOI: 10.1016/j.foodchem.2013.10.108
Google Scholar
[28]
A. Mathur, S.K. Verma, R. Purohit, V. Gupta, V.K. Dua, G.B.K.S. Prasad, D. Mathur, S.K. Singh, S. Singh. Evaluation of in vitro antimicrobial and antioxidant activities of peel and pulp of some citrus fruits, Journal of Biotechnology and Biotherapeutics 2 (2011) 1–17.
Google Scholar
[29]
P. Logeswari, S. Silambarasan, J. Abraham. Ecofriendly synthesis of silver nanoparticles from commercially available plant powders and their antibacterial properties, Scientia Iranica F 20 (2013) 1049–1054.
Google Scholar
[30]
C.P. Devatha, A.K. Thalla, S.Y. Katte. Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water, Journal of Cleaner Production 139 (2016) 1425‒1435.
DOI: 10.1016/j.jclepro.2016.09.019
Google Scholar
[31]
K. Elangovan, D. Elumalai, S. Anupriya, R. Shenbhagaraman, P.K. Kaleena, K. Murugesan. Phyto mediated biogenic synthesis of silver nanoparticles using leaf extract of Andrographis echioides and its bio-efficacy on anticancer and antibacterial activities, Journal of Photochemistry and Photobiology B: Biology 151 (2015) 118–124.
DOI: 10.1016/j.jphotobiol.2015.05.015
Google Scholar
[32]
N. Akhtar, I.U. Haq, B. Mirza. Phytochemical analysis and comprehensive evaluation of antimicrobial and antioxidant properties of 61 medicinal plant species, Arabian Journal of Chemistry11 (2018) 1223‒1235.
DOI: 10.1016/j.arabjc.2015.01.013
Google Scholar
[33]
N.S. Chavan, M.M. Patil, J.V. Borase, N.D. Magar. Phytochemical analysis an antimicrobial activity of Curcuma longa (rhizome extract) against human pathogens, Bulletin of Environment, Pharmacology and Life Sciences 6 (2017) 541‒545.
Google Scholar
[34]
R. Mythili, T. Selvankumar, P. Srinivasan, A. Sengottaiyan, J. Sabastinraj, F. Ameen, A. Al-Sabri, S.K. Kannan, M. Govarthanan, H. Kim, Biogenic synthesis, characterization and antibacterial activity of gold nanoparticles synthesized from vegetable waste, Journal of Molecular Liquids 262 (2018) 318–321. https://doi.org/10.1016/j.molliq.2018.04.087.
DOI: 10.1016/j.molliq.2018.04.087
Google Scholar
[35]
F.Ö. Küp, S. Çoşkunçay, F. Duman, Biosynthesis of silver nanoparticles using leaf extract of Aesculus hippocastanum (horse chestnut): Evaluation of their antibacterial, antioxidant and drug releasesystem activities, Materials Science & Engineering C (2019) doi: https://doi.org/10.1016/j.msec.2019.110207.
DOI: 10.1016/j.msec.2019.110207
Google Scholar
[36]
A.V. Ramesh, D.R. Devi, G.R. Battu, K. Basavaiah, Facile plant mediated synthesis of silver nanoparticles using an aqueous leaf extract of Ficus hispida Linn. f. for catalytic, antioxidant and antibacterial applications, South African Journal of Chemical Engineering 26 (2018) 25–34. https://doi.org/10.1016/j.sajce.2018.07.001.
DOI: 10.1016/j.sajce.2018.07.001
Google Scholar
[37]
P. Dauthal, M. Mukhopadhyay, Antioxidant activity of phytosynthesized biomatrix-loaded noble metallic nanoparticles, Chinese Journal of Chemical Engineering 26 (2018) 1200–1208. https://doi.org/10.1016/j.cjche.2017.12.014.
DOI: 10.1016/j.cjche.2017.12.014
Google Scholar
[38]
I. Öçsoy, A. Demırbas, E.S. McLamore, B. Altinsoy, N. Ildız, A. Baldemir, Green synthesis with incorporated hydrothermal approaches for silver nanoparticles formation and enhanced antimicrobial activity against bacterial and fungal pathogens, J Mol Lıq, cilt. 238 (2017) 263-269.https://doi.org/10.1016/j.molliq.2017.05.012.
DOI: 10.1016/j.molliq.2017.05.012
Google Scholar
[39]
A. Bedi, B.R. Singh, S.K. Deshmukh, A. Adholeya, C.J. Barrow, An Aspergillus aculateus strain was capable of producing agriculturally useful nanoparticles via bioremediation of iron ore tailings, Journal of Environmental Management 215 (2018) 100-107. https://doi.org/10.1016/j.jenvman.2018.03.049.
DOI: 10.1016/j.jenvman.2018.03.049
Google Scholar
[40]
V.B. Ravindran, A. Truskewycz, A.S. Ball, S.K. Soni, Detection of helminth ova genera using in-situ biosynthesis of gold nanoparticles, Methods X 6 (2019) 993–997. https://doi.org/10.1016/j.mex.2019.04.026.
DOI: 10.1016/j.mex.2019.04.026
Google Scholar
[41]
N. Madubuonu, S.O. Aisida, A. Ali, I. Ahmad, T.k. Zhao, S. Botha, M.M. Fabian, I. Ezema, Biosynthesis of iron oxide nanoparticles via a composite of Psidium guavaja-Moringa oleifera and their antibacterial and photocatalytic study, Journal of Photochemistry & Photobiology, B: Biology 199 (2019) 111601. https://doi.org/10.1016/j.jphotobiol.2019.111601.
DOI: 10.1016/j.jphotobiol.2019.111601
Google Scholar
[42]
F. Benakashani, A.R. Allafchian, S.A.H. Jalali, Biosynthesis of silver nanoparticles using Capparis spinosa L. leaf extract and their antibacterial activity, Karbala International Journal of Modern Science 2 (2016) 251–258. https://doi.org/10.1016/j.kijoms.2016.08.004.
DOI: 10.1016/j.kijoms.2016.08.004
Google Scholar
[43]
C.G. Yuan, C. Huo, S. Yu, B. Gui, Biosynthesis of gold nanoparticles using Capsicum annuum var. grossum pulp extract and its catalytic activity, Physica E 85 (2017) 19–26. https://doi.org/10.1016/j.physe.2016.08.010.
DOI: 10.1016/j.physe.2016.08.010
Google Scholar
[44]
L. Biao, S. Tan, X. Zhang, J. Gao, Z. Liu, Y. Fu, Synthesis and characterization of proanthocyanidins-functionalized Ag nanoparticles, Colloids and Surfaces B: Biointerfaces 169 (2018) 438–443. https://doi.org/10.1016/j.colsurfb.2018.05.050.
DOI: 10.1016/j.colsurfb.2018.05.050
Google Scholar
[45]
S. Rajeshkumar, G. Rinitha, Nanostructural characterization of antimicrobial and antioxidant copper nanoparticles synthesized using novel Persea Americana seeds, Open Nano 3 (2018) 18–27. https://doi.org/10.1016/j.onano.2018.03.001.
DOI: 10.1016/j.onano.2018.03.001
Google Scholar
[46]
I.K. Uddin, Ahmad, A.A. Khan, M.A. Kazmi, Synthesis of silver nanoparticles using Matricaria recutita (Babunah) plant extract and its study as mercury ions sensor, Sensing and Bio-Sensing Research 16 (2017) 62–67. https://doi.org/10.1016/j.sbsr.2017.11.005.
DOI: 10.1016/j.sbsr.2017.11.005
Google Scholar
[47]
R. Prabhakar, S.R. Samadder, Jyotsana, Aquatic and terrestrial weed mediated synthesis of iron nanoparticles for possible application in wastewater remediation, Journal of Cleaner Production, 168 (2017) 1201–1210. https://doi.org/10.1016/j.jclepro.2017.09.063.
DOI: 10.1016/j.jclepro.2017.09.063
Google Scholar
[48]
R. Javed, M. Ahmed, I. Haq, S. Nisa, M. Zia, PVP and PEG doped CuO nanoparticles are more biologically active: Antibacterial, antioxidant, antidiabetic and cytotoxic perspective, Materials Science and Engineering C 79 (2017) 108–115.
DOI: 10.1016/j.msec.2017.05.006
Google Scholar
[49]
G. Franci, A. Falanga, S. Galdiero, L. Palomba, M. Rai, G. Morelli, M. Galdiero, Silver nanoparticles as potential antibacterial agents, Molecules 20 (2015) 8856–8874.
DOI: 10.3390/molecules20058856
Google Scholar
[50]
S. Ahmed, M. Ahmed, B.L. Swami, S. Ikram, A review on plant extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise, Journal of Advanced Research 7 (2016) 17–28. http://dx.doi.org/10.1016/j.jare.2015.02.007.
DOI: 10.1016/j.jare.2015.02.007
Google Scholar
[51]
B. Ajitha, Y.A.K. Reddy, P.S. Reddy, Biogenic nano-scale silver particles by Tephrosia purpurea leaf extract and their inborn antimicrobial activity, Spectro chim. Acta A 121 (2014) 164–172. https://doi.org/10.1016/j.saa.2013.10.077.
DOI: 10.1016/j.saa.2013.10.077
Google Scholar
[52]
R. Banasiuk, M. Krychowiak, D. Swigon, W. Tomaszewicz, A. Michalak, A. Chylewska, M. Ziabka, M. Lapinski, B. Koscielska, M. Narajczyk, A. Krolicka, Carnivorous plants used for green synthesis of silver nanoparticles with broad-spectrum antimicrobial activity, Arabian Journal of Chemistry 11 (2017) 1–14. https://doi.org/10.1016/j.arabjc.2017.11.013.
DOI: 10.1016/j.arabjc.2017.11.013
Google Scholar
[53]
S. Vimalraj, T.A. kumar, S. Saravanan, Biogenic gold nanoparticles synthesis mediated by Mangifera indica seed aqueous extracts exhibits antibacterial, anticancer and anti-angiogenic properties, Biomedicine & Pharmacotherapy 105 (2018) 440–448. https://doi.org/10.1016/j.biopha.2018.05.151.
DOI: 10.1016/j.biopha.2018.05.151
Google Scholar
[54]
L.B. Roque, E.G. Espinosaa, M. Vieraa, N. Bellottia, Assessment of three plant extracts to obtain silver nanoparticles as alternative additives to control biodeterioration of coatings, International Biodeterioration & Biodegradation 141 (2019) 52–61. https://doi.org/10.1016/j.ibiod.2018.06.011.
DOI: 10.1016/j.ibiod.2018.06.011
Google Scholar
[55]
W.R. Rolim, M.T. Pelegrino, B.D.A. Lima, L.S. Ferraz, F.N. Costa, J.S. Bernardes, T. Rodiguesa, M. Brocchi, Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity, Applied Surface Science 463 (2019) 66–74. https://doi.org/10.1016/j.apsusc.2018.08.203.
DOI: 10.1016/j.apsusc.2018.08.203
Google Scholar