Nanoparticle and Schiff Base Compound in Poly(O-Aminobenzyl Alcohol) Coating for Protection of 316L Stainless Steel against Corrosion

Article Preview

Abstract:

The electrochemical synthesis of poly (o-aminobenzyl alcohol) (PABA) coatings containing three different amounts of NiZnFe4O4 nanoparticle (NP) with and without 0.25 mM Schiff base (ORG) on stainless steel (SS) was carried out in 0.15 M LiClO4 containing acetonitrile (ACN) solution. The synthesis curves of PABA-NP and PABA-ORG-NP films exhibited the different current and monomer oxidation potential values indicating the presence of NP and ORG compounds. Besides, the addition of ORG to the NP-containing synthesis solution resulted in an increase in the electropolymerization rate of the PABA film compared to the NP-containing medium alone. Indeed, SEM images of PABA-NP and PABA-ORG-NP also showed that their morphological structures were different. As a result of the evaluation of the impedance analysis, it was seen that PABA-NP and PABA-ORG-NP films provided significant physical barrier behavior to the SS electrode, in 3.5% NaCl solution. PABA-NP25 and PABA-ORG-NP25 coatings exhibited more protection behavior against to the move of corrosive substances to SS. The presence of both NP and ORG in the polymer coating further improved the superior protection property of the PABA film, in a longer time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-119

Citation:

Online since:

September 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Guo, J. Tang, T. Gu, C. Peng, Q. Li, C. Pan, Z. Wang, Corrosion Behavior of 316L Stainless Steels Exposed to Salt Lake Atmosphere of Western China for 8 years, Acta Metall. Sin. Engl. 34 (2021) 555-564. doi.org/10.1007/s40195-020-01127-8.

DOI: 10.1007/s40195-020-01127-8

Google Scholar

[2] G. Kilinççeker, H. Demir, The Inhibition Effects of Methionine on Corrosion Behavior of Copper in 3.5% NaCl Solution at pH = 8.5, Prot. Met. Phys. Chem. 49(6) (2013) 788-797. doi.org/10.1134/s2070205113060221.

DOI: 10.1134/s2070205113060221

Google Scholar

[3] M. Yeganeh, I. Khosravi-Bigdeli, M. Eskandari, S.R. Alavi Zaree, Corrosion Inhibition of l-Methionine Amino Acid as a Green Corrosion Inhibitor for Stainless Steel in the H2SO4 Solution, J. Mater. Eng. Perform. 29(6) (2020) 3983-3994. https://doi.org/10.1007/s11665-020-04890-y.

DOI: 10.1007/s11665-020-04890-y

Google Scholar

[4] A.T. Hassan, R.K. Hussein, M. Abou-krisha, M.I. Attia, Density Functional Theory Investigation of Some Pyridine Dicarboxylic Acids Derivatives as Corrosion Inhibitors, Int. J. Electrochem. Sci. 15 (2020) 4274-4286.

DOI: 10.20964/2020.05.11

Google Scholar

[5] K.R. Sriraman, S. Brahimi, J.A. Szpunar, J.H. Osborne, S. Yue, Characterization of corrosion resistance of electrodeposited Zn–Ni Zn and Cd coatings, Electrochim. Acta. 105 (2013) 314-323. doi.org/10.1016/j.electacta.2013.05.010.

DOI: 10.1016/j.electacta.2013.05.010

Google Scholar

[6] H. Ashassi-Sorkhabi, S.H. Rafizadeh, Effect of coating time and heat treatment on structures and corrosion characteristics of electroless Ni–P alloy deposits, Surf. Coat. Technol. 176 (2004) 318-326. doi.org/10.1016/S0257-8972(03)00746-1.

DOI: 10.1016/s0257-8972(03)00746-1

Google Scholar

[7] H.M. Abd El-Lateef, A. El-Sayed, H.S. Mohran, Role of Ni content in improvement of corrosion resistance of Zn–Ni alloy in 3.5% NaCl solution. Part I: Polarization and impedance studies. Trans. Nonferrous Met. Soc. China. 25 (2015) 2807-2816. doi.org/10.1016/S1003-6326(15) 63906-1.

DOI: 10.1016/s1003-6326(15)63906-1

Google Scholar

[8] A.C. Hegde, K. Venkatakrishna, N. Eliaz, Electrodeposition of Zn–Ni, Zn–Fe and Zn–Ni–Fe alloys, Surf. Coat. Technol. 205 (2010) 2031-2041. doi.org/10.1016/j.surfcoat.2010.08.102.

DOI: 10.1016/j.surfcoat.2010.08.102

Google Scholar

[9] K. Mech, Electrodeposition of Composite Ni-TiO2 Coatings from Aqueous Acetate Baths, Metall. Mater. Trans. A. 50A (2019) 4275-4287. doi.org/10.1007/s11661-019-05325-7.

DOI: 10.1007/s11661-019-05325-7

Google Scholar

[10] A.V. Syugaev, A.N. Maratkanova, A.A. Shakov, N.V. Lyalina, D.A. Smirnov, Polyaniline films electrodeposited on iron from oxalic acid solution:spectroscopic analysis of chemical structure, J. Solid State Electrochem. 22 (2018) 3171-3182. doi.org/10.1007/s10008-018-4033-9.

DOI: 10.1007/s10008-018-4033-9

Google Scholar

[11] L. Zhang, S. Liu, H. Han, Y. Zhou, S. Hu, C. He, Q. Yan, Studies on the formation process and anti-corrosion performance of polypyrrole film deposited on the surface of Q235 steel by an electrochemical method, Surf. Coat. Technol. 341 (2018) 95-102. doi.org/10.1016/j.surfcoat. 2017.12.034.

DOI: 10.1016/j.surfcoat.2017.12.034

Google Scholar

[12] A. El Jaouhari, A. Chennah, S. Ben Jaddi, H. Ait Ahsaine, Z. Anfar, Y.T. Alaoui, Y. Naciri, A. Benlhachemi, M. Bazzaoui, Electrosynthesis of zinc phosphate-polypyrrole coatings for improved corrosion resistance of steel, Surf. Interfaces. 15 (2019) 224-231. doi.org/10.1016/j.surfin.2019.02.011.

DOI: 10.1016/j.surfin.2019.02.011

Google Scholar

[13] P.P. Deshpande, N.G. Jadhav, V.J. Gelling, D. Sazou, Conducting polymers for corrosion protection: a review, J. Coat. Technol. Res. 11(4) (2014) 473-494. doi.org/10.1007/s11998-014-9586-7.

DOI: 10.1007/s11998-014-9586-7

Google Scholar

[14] N.M. Martyak, P. McAndrew, Corrosion performance of steel coated with co-polyamides and polyaniline, Corros. Sci. 49 (2007) 3826-3837. doi.org/ 10.1016/j.corsci.2007.05.013.

DOI: 10.1016/j.corsci.2007.05.013

Google Scholar

[15] F. Gao, J. Mu, Z. Bi, S. Wang, Z. Li, Recent advances of polyaniline composites in anticorrosive coatings: A review, Prog. Org. Coat. 151 (2021) 106071, doi.org/10.1016/j.porgcoat. 2020.106071.

DOI: 10.1016/j.porgcoat.2020.106071

Google Scholar

[16] T. Schauer, A. Joos, L. Dulog, C.D. Eisenbach, Protection of iron against corrosion with polyaniline primers, Prog. Org. Coat. 33 (1997) 20–27. doi.org/ 10.1016/S0300-9440(97)00123-9.

DOI: 10.1016/s0300-9440(97)00123-9

Google Scholar

[17] T. D. Nguyen, T. A. Nguyen, M.C. Pham, B. Piro, B. Normand, H. Takenouti, Mechanism for protection of iron corrosion by an intrinsically electronic conducting polymer, J. Electroanal. Chem. 572 (2004) 225-234.

DOI: 10.1016/j.jelechem.2003.09.028

Google Scholar

[18] A. Rouhollahi and M.H.B. Khaleghi, Corrosion Protection of Carbon Steel by Highly Processable Conducting Polyaniline doped Phosphoric Acid and Dodecyl benzenesulfonic Acid, Anal. Bioanal. Electrochem. 9(8) (2017) 982-999.

Google Scholar

[19] F. Li, G. Li, J. Zeng, G. Gao, Molybdate-doped copolymer coatings for corrosion prevention of stainless steel, J. Appl. Polym. Sci. 131(16) (2014) 40602 (1 of 8).

DOI: 10.1002/app.40602

Google Scholar

[20] L. Jiang, J.A. Syed, Y. Gao, H. Lu, X. Meng, Electrodeposition of Ni(OH)2 reinforced polyaniline coating for corrosion protection of 304 stainless steel, Appl. Surf. Sci. 440 (2018) 1011-1021. doi.org/10.1016/j.apsusc.2018.01.145.

DOI: 10.1016/j.apsusc.2018.01.145

Google Scholar

[21] W. Li, Electrodeposition of PANI/MWCNT Coatings on Stainless Steel and Their Corrosion Protection Performances, Int. J. Electrochem. Sci. 13 (2018) 1367-1375.

DOI: 10.20964/2018.02.31

Google Scholar

[22] C.K. Tan, D.J. Blackwood, Corrosion protection by multilayered conducting polymer coatings, Corros. Sci. 45(3) (2003) 545–557. doi. 10.1016/S0010-938X(02)00144-0.

DOI: 10.1016/s0010-938x(02)00144-0

Google Scholar

[23] A.T. Ozyılmaz, M. Erbil, B. Yazıcı, The electrochemical synthesis of polyaniline on stainless steel and its corrosion performance, Curr. Appl. Phys. 6 (2006) 1-9. doi.org/10.1016/j.cap. 2004.06.027.

Google Scholar

[24] A.T. Ozyılmaz, M. Erbil, B. Yazıcı, Investigation of corrosion behaviour of stainless steel coated with polyaniline via electrochemical impedance spectroscopy, Prog. Org. Coat. 51 (2004) 47-54. doi.org/10.1016/j.porgcoat.2004.06.001.

DOI: 10.1016/j.porgcoat.2004.06.001

Google Scholar

[25] D. Sazou, Electrodeposition of ring-substituted polyanilines on Fe surfaces from aqueous oxalic acid solutions and corrosion protection of Fe, Synth. Met. 118 (2001) 133-147. doi.org/10.1016/S0379-6779(00)00399-4.

DOI: 10.1016/s0379-6779(00)00399-4

Google Scholar

[26] Giovani de T. Andrade, M. J. Aguirre, S.R. Biaggio, Influence of the first potential scan on the morphology and electrical properties of potentiodynamically grown polyaniline films, Electrochim. Acta. 44 (1998) 633-642. doi.org/10.1016/S0013-4686(98)00185-6.

DOI: 10.1016/s0013-4686(98)00185-6

Google Scholar

[27] N.V. Blinova, J. Stejskal, M. Trchova, J. Prokes, Polyaniline prepared in solutions of phosphoric acid: Powders, thin films, and colloidal dispersions, Polymer. 47 (2006) 42-48.

DOI: 10.1016/j.polymer.2005.10.145

Google Scholar

[28] M. Kohl, A. Kalendová, E. Cĕrnošková, M. Bláha, J. Stejskal, M. Erben, Corrosion protection by organic coatings containing polyaniline salts prepared by oxidative polymerization, J. Coat. Technol. Res. 14 (2017) 1397-1410. doi.org/10.1007/s11998-017-9942-5.

DOI: 10.1007/s11998-017-9942-5

Google Scholar

[29] J. Stejskal, P. Kratochvil, A.D. Jenkins, The formation of polyaniline and the nature of its structures, Polymer. 37 (1996) 367–369. https://doi.org/10.1016/0032-3861(96)81113-X.

DOI: 10.1016/0032-3861(96)81113-x

Google Scholar

[30] M. Kraljic, Z. Mandic, Lj. Dui, Inhibition of steel corrosion by polyaniline coatings, Corros. Sci. 45 (2003) 181–198. https://doi.org/10.1016/S0010-938X(02)00083-5.

Google Scholar

[31] S.R. Moraes, Domingo Huerta-Vilca, A.J. Motheo, Corrosion protection of stainless steel by polyaniline electrosynthesized from phosphate buffer solutions, Prog. Org. Coat. 48 (2003) 28–33. https://doi.org/10.1016/S0300-9440(03)00075-4.

DOI: 10.1016/s0300-9440(03)00075-4

Google Scholar

[32] N. Elangovan, A. Srinivasan, S. Pugalmani, N. Rajendiran, N. Rajendran, Development of poly(vinylcarbazole)/alumina nanocomposite coatings for corrosion protection of 316L stainless steel in 3.5% NaCl medium, J. Appl. Polym. Sci. (2017) 44937 (1of 13).

DOI: 10.1002/app.44937

Google Scholar

[33] A. Akdag, Electrochemical Synthesis and Corrosion Behaviour of Poly(o–anisidine)-TiO2 Nanocomposite on ZnNi-Plated Carbon Steel, ChemistrySelect. 5 (2020) 2496-2500. doi.org/10.1002/slct.202000063.

DOI: 10.1002/slct.202000063

Google Scholar

[34] J. Khodabakhshia, H. Mahdavib, F. Najafic, Investigation of viscoelastic and active corrosion protection properties of inhibitor modified silica nanoparticles/epoxy nanocomposite coatings on carbon steel, Corros. Sci. 147 (2019) 128-140. doi.org/10.1016/j.corsci.2018.11.014.

DOI: 10.1016/j.corsci.2018.11.014

Google Scholar

[35] H. Xu, Y. Zhang, A Review on Conducting Polymers and Nanopolymer Composite Coatings for Steel Corrosion Protection, Coat. 9 (2019) 807-827. doi.org/10.3390/coatings9120807.

DOI: 10.3390/coatings9120807

Google Scholar

[36] A.U. Saviour, M.S. Moses, Protective polymeric films for industrial substrates: A critical review on past and recent applications with conducting polymers and polymer composites/ nanocomposites, Prog. Mater. Sci. 104 (2019) 380-450. doi.org/10.1016/j.pmatsci.2019.04.002.

DOI: 10.1016/j.pmatsci.2019.04.002

Google Scholar

[37] B. Mordina, R. Kumar, , N.S. Neeraj, A.K. Srivastava, D.K. Setua, A. Sharma, Binder free high performance hybrid supercapacitor device based on nickel ferrite nanoparticles, J. Energy Storage. 31 (2020) 101677. doi.org/10.1016/j.est.2020.101677.

DOI: 10.1016/j.est.2020.101677

Google Scholar

[38] B. Doğru Mert, R. Solmaz, G. Kardaş, B. Yazıcı, Copper/polypyrrole multilayer coating for 7075 aluminum alloy protection, Prog. Org. Coat. 72 (2011) 748-754. doi.org/10.1016/j.porgcoat. 2011.08.006.

DOI: 10.1016/j.porgcoat.2011.08.006

Google Scholar

[39] S. Yang, S. Zhu, R. Hong, Graphene Oxide/Polyaniline Nanocomposites Used in Anticorrosive Coatings for Environmental Protection, Coat. 10 (2020) 1215-1225. doi.org/10.3390/coatings 10121215.

DOI: 10.3390/coatings10121215

Google Scholar

[40] P. Karthikeyan, S. Sathishkumar, K. Pandian, L. Mitu, R. Rajavel, Novel copper doped Halloysite Nano Tube/silver-poly(pyrrole-co-3,4-ethylenedioxythiophene) dual layer coatings on low nickel stainless steel for anti-corrosion applications, J. Sci-Adv. Mater.Dev. 3 (2018) 59-67. doi.org/10.1016/j.jsamd.2017.12.003.

DOI: 10.1016/j.jsamd.2017.12.003

Google Scholar

[41] A. Abou-E. Hermas, H.M. Wahdan, E.M. Ahmed, Phosphate-doped polyaniline/Al2O3 nanocomposite coating for protection of stainless steel, Anti-Corros. Method. M. 67 (2020) 491-499. doi.org/10.1108/ACMM-05-2020-2305.

DOI: 10.1108/acmm-05-2020-2305

Google Scholar

[42] M. Bagherzadeha, H. Haddadi, M. Iranpour, Electrochemical evaluation and surface study of magnetite/PANI nanocomposite for carbon steel protection in 3.5% NaCl, Prog. Org. Coat. 101 (2016) 149-160. doi.org/10.1016/j.porgcoat.2016.08.011.

DOI: 10.1016/j.porgcoat.2016.08.011

Google Scholar

[43] B. Rikhari, S. Pugal Mani, N. Rajendran, Polypyrrole/graphene oxide composite coating on Ti implants: a promising material for biomedical applications, J. Mater. Sci. 55 (2020) 5211-5229. doi.org/10.1007/s10853-019-04228-7.

DOI: 10.1007/s10853-019-04228-7

Google Scholar

[44] S. Masroor, Azomethine as Potential Corrosion Inhibitor for Different Metals and Alloys: Review, J. Bio. Tribo. Corros. 3 (2017) 27-43. doi.org/10.1007/s40735-017-0086-z.

DOI: 10.1007/s40735-017-0086-z

Google Scholar

[45] A. El Yaktini, A. Lachiri, M. El Faydy, F. Benhiba, H. Zarrok, M. El Azzouzi, M. Zertoubi, M. Azzi, B. Lakhrissi, A. Zarrouk, Inhibitor effect of new azomethine derivative containing an 8-hydroxyquinoline moiety on corrosion behavior of mild carbon steel in acidic media, Int. J. Corros. Scale Inhib. 7 (2018) 609-632.

DOI: 10.13005/ojc/340643

Google Scholar

[46] D.M. Jamil, A.K. Al-Okbi, S.B. Al-Baghdadi, A.A. Al-Amiery, A. Kadhim, T.S. Gaaz, A.A.H. Kadhum, A.B. Mohamad, Experimental and theoretical studies of Schiff bases as corrosion inhibitors, Chem. Cent. J. 12 (2018) 7.

DOI: 10.1186/s13065-018-0376-7

Google Scholar

[47] A.T. Ozyilmaz, A.E. Aydin, A. Akdag, Anticorrosive properties with catalytic behaviour of primer PANI film and top PPy coating synthesised in presence of novel norephedrine based amino alcohol compound, T.I. Met. Finish. 92 (2014) 34-40. doi.org/10.1179/0020296713Z. 000000000134.

DOI: 10.1179/0020296713z.000000000134

Google Scholar

[48] A.T. Ozyilmaz, B. Ozgen, C. Celik, Poly(o-aminobenzyl alcohol) Films with and without Organic Compound on AISI 316 Surface; Synthesis and the Corrosion Performances, JOTCSA 7 (2020) 375-382. doi.org/10.18596/jotcsa.641851.

DOI: 10.18596/jotcsa.641851

Google Scholar

[49] H. Schiff, Mittheilungen aus dem Universitätslaboratorium in Pisa: Eine neue Reihe organischer Basen, Ann. Chem. Pharm. Suppl. 3 (1864) 343-344.

DOI: 10.1002/jlac.18641310113

Google Scholar

[50] A.T. Ozyilmaz, G. Ozyilmaz, N. Colak, Novel synthesis medium for poly(aniline-co-o-anisidine), Surf. Coat. Technol. 201 (2006) 2484-2490.

DOI: 10.1016/j.surfcoat.2006.04.008

Google Scholar

[51] G.W. Walter, A Review of Impedance Plot Methods Used for Corrosion Performance Analysis of Painted Metals, Corros. Sci. 26 (1986) 681-703. doi.org/10.1016/0010-938X(86)90033-8.

DOI: 10.1016/0010-938x(86)90033-8

Google Scholar

[52] A.T. Ozyilmaz, G. Ozyilmaz, O. Yigitoglu, Synthesis and characterization of poly(aniline) and poly(o-anisidine) films in sulphamic acid solution and their anticorrosion properties, Prog. Org. Coat. 67 (2010) 28-37. doi.org/10.1016/j.porgcoat.2009.09.010.

DOI: 10.1016/j.porgcoat.2009.09.010

Google Scholar

[53] W.J. Lorenz, F. Mansfeld, Determination of corrosion rates by electrochemical DC and AC methods, Corros. Sci. 21(1981) 647-672. doi.org/10.1016/0010-938X(81)90015-9.

DOI: 10.1016/0010-938x(81)90015-9

Google Scholar

[54] F. Mansfeld, Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer coatings, J. Appl. Electrochem. 25 (1995) 187-202. doi.org/10.1007/BF00262955.

DOI: 10.1007/bf00262955

Google Scholar