Synthesis, Characterization, and Wear Behavior of W-DLC Films Deposited on Si Substrates

Article Preview

Abstract:

Tungsten (W) reinforced diamond-like carbon (DLC) nanocomposite thin films were deposited on silicon substrates by magnetron sputtering in a CH4/Ar discharge. The W content of the films was varied by varying the W target power (20, 40, 60, 80, and 100 W). The evolution of the W-DLC nanocomposites was studied by high-resolution transmission electron microscopy, X-ray energy dispersive spectroscopy, X-ray photoelectron spectroscopy, 3D optical profilometry and Raman spectroscopy. Increasing the W target power resulted in an almost liner increase in the W content, reduced the hardness and the sp3/sp2 ratio in the films, while it increased the surface roughness and promoted formation of WC nanoparticles. Tribological properties were studied by conducting sliding reciprocating testing. Wear tracks were analyzed with Raman spectroscopy and 3D optical profilometry. Increasing the W content in the films (increasing target power) resulted in a reduction of both, the friction coefficient and wear rate. The film deposited at 80 W target power (~8 at. % W) exhibited the lowest friction coefficient (0.15) and wear rate (6x10-7 mm3N-1m-1). The observed low friction and wear rate were attributed to the particular nanocomposite structure of the films involving a fine distribution of WC nanoparticles surrounded by a sp2 dominant carbon network. The present W-DLC nanocomposite films offer a highly desirable combination of low friction and low wear rate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-120

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Khodayari, H. Elmkhah, M. Alizadeh, A. Maghsoudipour, Modified diamond-like carbon (Cr-DLC) coating applied by PACVD-CAPVD hybrid method: Characterization and evaluation of tribological and corrosion behavior, Diam. Relat. Mater. 136 (2023) 109968.

DOI: 10.1016/j.diamond.2023.109968

Google Scholar

[2] Y. Liu, A. Erdemir, E.I. Meletis, Influence of environmental parameters on the frictional behavior of DLC coatings, Surf. Coat. Technol. 94 (1997) 463–468.

DOI: 10.1016/S0257-8972(97)00450-7

Google Scholar

[3] X. Cao, L. Shang, G. Zhang, Q. Ding, Simultaneously Improving the Corrosion Resistance and Wear Resistance of Internal Surface of Aluminum Pipe by Using Multilayer Diamond-Like Carbon-Si Coatings, J. Mater. Eng. Perform. 31 (2022) 5622–5629.

DOI: 10.1007/s11665-022-06678-8

Google Scholar

[4] A. Varma, V. Palshin, E.I. Meletis, C. Fountzoulas, Tribological behaviour of Si–DLC coatings, Surf. Eng. 15 (1999) 301–306.

DOI: 10.1179/026708499101516641

Google Scholar

[5] L. Natrayan, P. Gaur, A. Merneedi, S. Kaliappan, P.P. Patil, V. Sivaprakash, M.D. Chewaka, Investigation of Tribological Behaviour on DLC Coatings for AA5051 using DC Sputtering, Adsorpt. Sci. Technol. 2022 (2022) e4574218.

DOI: 10.1155/2022/4574218

Google Scholar

[6] N. Ali, Y. Kousar, T.I. Okpalugo, V. Singh, M. Pease, A.A. Ogwu, J. Gracio, E. Titus, E.I. Meletis, M.J. Jackson, Human micro-vascular endothelial cell seeding on Cr-DLC thin films for mechanical heart valve applications, Thin Solid Films. 515 (2006) 59–65.

DOI: 10.1016/j.tsf.2005.12.023

Google Scholar

[7] R. Oshima, K. Iizuka, A. Ya. Vul, F.M. Shakhov, Single crystal diamond particles formed by the reaction of carbon black and solid alcohol under high-pressure and high-temperature, J. Cryst. Growth. 587 (2022) 126646.

DOI: 10.1016/j.jcrysgro.2022.126646

Google Scholar

[8] O.A. Streletskiy, O.Y. Nishchak, I.A. Zavidovskiy, K.I. Maslakov, A.V. Pavlikov, Sp-based thin films synthesized by magnetron sputtering of dehydrohalogenated Polyvinylidenchloride, Thin Solid Films. 739 (2021) 138993.

DOI: 10.1016/j.tsf.2021.138993

Google Scholar

[9] M.R. Goyal, S. Kulkarni, Advances in Green and Sustainable Nanomaterials: Applications in Energy, Biomedicine, Agriculture, and Environmental Science, CRC Press, 2023.

DOI: 10.1201/9781003328322

Google Scholar

[10] D.D. Kumar, P. Kuppusami, G.S. Kaliaraj, S.S. Sana, A.M.K. Kirubaharan, Tribological Properties of Carbon-Based Coatings, in: Tribol. Charact. Surf. Coat., John Wiley & Sons, Ltd, 2022: p.115–137.

DOI: 10.1002/9781119818878.ch6

Google Scholar

[11] B. Ali, H. Xu, R.T. Sang, I.V. Litvinyuk, M. Rybachuk, Optimised diamond to graphite conversion via a metastable sp1-bonded carbon chain formation under an ultra-short femtosecond (30 fs) laser irradiation, Carbon. 204 (2023) 575–586.

DOI: 10.1016/j.carbon.2023.01.012

Google Scholar

[12] S.K. Pal, J. Jiang, E.I. Meletis, Effects of N-doping on the microstructure, mechanical and tribological behavior of Cr-DLC films, Surf. Coat. Technol. 201 (2007) 7917–7923.

DOI: 10.1016/j.surfcoat.2007.03.036

Google Scholar

[13] F. Picollo, A. Battiato, F. Bosia, F.S. Muta, P. Olivero, V. Rigato, S. Rubanov, Creation of pure non-crystalline diamond nanostructures via room-temperature ion irradiation and subsequent thermal annealing, Nanoscale Adv. 3 (2021) 4156–4165.

DOI: 10.1039/D1NA00136A

Google Scholar

[14] V. Palshin, E.I. Meletis, S. Ves, S. Logothetidis, Characterization of ion-beam-deposited diamond-like carbon films, Thin Solid Films. 270 (1995) 165–172.

DOI: 10.1016/0040-6090(95)06912-7

Google Scholar

[15] I. Alaefour, S. Shahgaldi, J. Zhao, X. Li, Synthesis and Ex-Situ characterizations of diamond-like carbon coatings for metallic bipolar plates in PEM fuel cells, Int. J. Hydrog. Energy. 46 (2021) 11059–11070.

DOI: 10.1016/j.ijhydene.2020.09.259

Google Scholar

[16] F. Lofaj, M. Kabátová, L. Kvetková, J. Dobrovodský, The effects of deposition conditions on hydrogenation, hardness and elastic modulus of W-C:H coatings, J. Eur. Ceram. Soc. 40 (2020) 2721–2730.

DOI: 10.1016/j.jeurceramsoc.2019.12.062

Google Scholar

[17] K. Malisz, B. Świeczko-Żurek, A. Sionkowska, Preparation and Characterization of Diamond-like Carbon Coatings for Biomedical Applications—A Review, Materials. 16 (2023) 3420.

DOI: 10.3390/ma16093420

Google Scholar

[18] F.O. Kolawole, O.S. Kolade, S.A. Bello, S.K. Kolawole, A.T. Ayeni, T.F. Elijah, S.G. Borisade, A.P. Tschiptschin, The improvement of diamond-like carbon coatings for tribological and tribo-corrosion applications in automobile engines: an updated review study, Int. J. Adv. Manuf. Technol. 126 (2023) 2295–2322.

DOI: 10.1007/s00170-023-11282-8

Google Scholar

[19] V.V. Siva Kumar, Nanocrystalline diamond films growth by microwave ECR CVD: Studies of structural and photoconduction properties, Vacuum. 131 (2016) 259–263.

DOI: 10.1016/j.vacuum.2016.07.005

Google Scholar

[20] P. Wongpanya, T. Wongpinij, P. Photongkam, J. Siritapetawee, Improvement in corrosion resistance of 316L stainless steel in simulated body fluid mixed with antiplatelet drugs by coating with Ti-doped DLC films for application in biomaterials, Corros. Sci. 208 (2022) 110611.

DOI: 10.1016/j.corsci.2022.110611

Google Scholar

[21] M. Zawischa, V. Weihnacht, J. Kaspar, M. Zimmermann, Effect of doping elements to hydrogen-free amorphous carbon coatings on structure and mechanical properties with special focus on crack resistance, Mater. Sci. Eng. A. 857 (2022) 144086.

DOI: 10.1016/j.msea.2022.144086

Google Scholar

[22] A. Rosenkranz, H.L. Costa, M.Z. Baykara, A. Martini, Synergetic effects of surface texturing and solid lubricants to tailor friction and wear – A review, Tribol. Int. 155 (2021) 106792.

DOI: 10.1016/j.triboint.2020.106792

Google Scholar

[23] F.L. Wang, J.C. Jiang, E.I. Meletis, Microstructural evolution of Co nanostructures in diamond-like carbon by plasma-assisted processing, J. Appl. Phys. 95 (2004) 5069–5074.

DOI: 10.1063/1.1691181

Google Scholar

[24] A. Varma, V. Palshin, E.I. Meletis, Structure–property relationship of Si-DLC films, Surf. Coat. Technol. 148 (2001) 305–314.

DOI: 10.1016/S0257-8972(01)01350-0

Google Scholar

[25] V. Singh, J.C. Jiang, E.I. Meletis, Cr-diamondlike carbon nanocomposite films: Synthesis, characterization and properties, Thin Solid Films. 489 (2005) 150–158. https://doi.org/10.1016/j.tsf. 2005.04.104.

DOI: 10.1016/j.tsf.2005.04.104

Google Scholar

[26] Z.Q. Qi, E.I. Meletis, Mechanical and tribological behavior of nanocomposite multilayered Cr/a-C thin films, Thin Solid Films. 479 (2005) 174–181.

DOI: 10.1016/j.tsf.2004.12.009

Google Scholar

[27] M.E. Arslan, M.Ş. Kurt, N. Aslan, A. Kadi, S. Öner, Ş. Çobanoğlu, A. Yazici, Structural, biocompatibility, and antibacterial properties of Ge–DLC nanocomposite for biomedical applications, J. Biomed. Mater. Res. B Appl. Biomater. 110 (2022) 1667–1674.

DOI: 10.1002/jbm.b.35027

Google Scholar

[28] L. Cao, J. Liu, Y. Wan, J. Pu, Corrosion and tribocorrosion behavior of W doped DLC coating in artificial seawater, Diam. Relat. Mater. 109 (2020) 108019.

DOI: 10.1016/j.diamond.2020.108019

Google Scholar

[29] A.W. Zia, M. Birkett, Deposition of diamond-like carbon coatings: Conventional to non-conventional approaches for emerging markets, Ceram. Int. 47 (2021) 28075–28085.

DOI: 10.1016/j.ceramint.2021.07.005

Google Scholar

[30] S. Atta, U. NarendraKumar, K.V.A.N.P.S. Kumar, D.P. Yadav, S. Dash, Recent Developments and Applications of TiN-Based Films Synthesized by Magnetron Sputtering, J. Mater. Eng. Perform. (2023).

DOI: 10.1007/s11665-023-08273-x

Google Scholar

[31] A. Jedrzejczak, D. Batory, M. Prowizor, M. Dominik, M. Smietana, M. Cichomski, A. Kisielewska, W. Szymanski, W. Kozlowski, M. Dudek, Titanium(IV) isopropoxide as a source of titanium and oxygen atoms in carbon based coatings deposited by Radio Frequency Plasma Enhanced Chemical Vapour Deposition method, Thin Solid Films. 693 (2020) 137697.

DOI: 10.1016/j.tsf.2019.137697

Google Scholar

[32] J. Robertson, Diamond-like amorphous carbon, Mater. Sci. Eng. R Rep. 37 (2002) 129–281.

DOI: 10.1016/S0927-796X(02)00005-0

Google Scholar

[33] W. Kulisch, S. Ulrich, Parameter spaces for the nucleation and the subsequent growth of cubic boron nitride films, Thin Solid Films. 423 (2003) 183–195.

DOI: 10.1016/S0040-6090(02)00731-9

Google Scholar

[34] S. Ulrich, H. Holleck, H. Leiste, L. Niederberger, E. Nold, K. Sell, M. Stüber, J. Ye, C. Ziebert, P. Pesch, S. Sattel, Nano-scale, multi-functional coatings in the material system B–C–N–H, Surf. Coat. Technol. 200 (2005) 7–13.

DOI: 10.1016/j.surfcoat.2005.02.142

Google Scholar

[35] P. Gupta, V. Singh, E.I. Meletis, Tribological behavior of plasma-enhanced CVD a-C:H films. Part I: effect of processing parameters, Tribol. Int. 37 (2004) 1019–1029.

DOI: 10.1016/j.triboint.2004.07.020

Google Scholar

[36] J. Li, B. Li, Y. Zuo, H. Liu, Y. Bai, H. Yuan, Z. Li, K. Xu, G. Chen, Application of dual radio frequency inductive coupled plasma into CVD diamond growth, Vacuum. 154 (2018) 174–176.

DOI: 10.1016/j.vacuum.2018.04.054

Google Scholar

[37] V. Singh, V. Palshin, R.C. Tittsworth, E.I. Meletis, Local structure of composite Cr-containing diamond-like carbon thin films, Carbon. 44 (2006) 1280–1286.

DOI: 10.1016/j.carbon.2005.10.048

Google Scholar

[38] P. Vijai Bharathy, Q. Yang, M.S.R.N. Kiran, J. Rha, D. Nataraj, D. Mangalaraj, Reactive biased target ion beam deposited W–DLC nanocomposite thin films — Microstructure and its mechanical properties, Diam. Relat. Mater. 23 (2012) 34–43.

DOI: 10.1016/j.diamond.2011.12.016

Google Scholar

[39] T. Takeno, T. Komiyama, H. Miki, T. Takagi, T. Aoyama, XPS and TEM study of W-DLC/DLC double-layered film, Thin Solid Films. 517 (2009) 5010–5013.

DOI: 10.1016/j.tsf.2009.03.033

Google Scholar

[40] Zh.Q. Yao, P. Yang, N. Huang, H. Sun, J. Wang, Structural, mechanical and hydrophobic properties of fluorine-doped diamond-like carbon films synthesized by plasma immersion ion implantation and deposition (PIII–D), Appl. Surf. Sci. 230 (2004) 172–178.

DOI: 10.1016/j.apsusc.2004.02.044

Google Scholar

[41] L.G. Jacobsohn, S.S. Camargo Jr, F.L. Freire Jr, Fluorinated aC: H films investigated by thermal-induced gas effusion, Diam. Relat. Mater. 11 (2002) 1831–1836. https://doi.org/.

DOI: 10.1016/S0925-9635(02)00167-X

Google Scholar

[42] M. Venkatesh, S. Taktak, E.I. Meletis, Synthesis of Ag-doped hydrogenated carbon thin films by a hybrid PVD–PECVD deposition process, Bull. Mater. Sci. 37 (2014) 1669–1676.

DOI: 10.1007/s12034-014-0728-4

Google Scholar

[43] L. Ji, H. Li, F. Zhao, J. Chen, H. Zhou, Microstructure and mechanical properties of Mo/DLC nanocomposite films, Diam. Relat. Mater. 17 (2008) 1949–1954.

DOI: 10.1016/j.diamond.2008.04.018

Google Scholar

[44] H.E. Sliney, Solid lubricant materials for high temperatures—a review, Tribol. Int. 15 (1982) 303–315.

DOI: 10.1016/0301-679X(82)90089-5

Google Scholar

[45] A. Erdemir, C. Donnet, Tribology of diamond-like carbon films: recent progress and future prospects, J. Phys. Appl. Phys. 39 (2006) R311.

DOI: 10.1088/0022-3727/39/18/R01

Google Scholar

[46] R. Karslioglu, H. Akbulut, Comparison microstructure and sliding wear properties of nickel–cobalt/CNT composite coatings by DC, PC and PRC current electrodeposition, Appl. Surf. Sci. 353 (2015) 615–627.

DOI: 10.1016/j.apsusc.2015.06.161

Google Scholar

[47] V. Palshin, R.C. Tittsworth, C.G. Fountzoulas, E.I. Meletis, X-ray absorption spectroscopy, simulation and modeling of Si-DLC films, J. Mater. Sci. 37 (2002) 1535–1539.

DOI: 10.1023/A:1014960616824

Google Scholar

[48] Y. Liu, A. Erdemir, E.I. Meletis, An investigation of the relationship between graphitization and frictional behavior of DLC coatings, Surf. Coat. Technol. 86 (1996) 564–568.

DOI: 10.1016/S0257-8972(96)03057-5

Google Scholar

[49] Y. Liu, E.I. Meletis, Evidence of graphitization of diamond-like carbon films during sliding wear, J. Mater. Sci. 32 (1997) 3491–3495.

DOI: 10.1023/A:1018641304944

Google Scholar

[50] V. Thapliyal, M.E. Alabdulkarim, D.R. Whelan, B. Mainali, J.L. Maxwell, A concise review of the Raman spectra of carbon allotropes, Diam. Relat. Mater. 127 (2022) 109180.

DOI: 10.1016/j.diamond.2022.109180

Google Scholar

[51] A.C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond, Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 362 (2004) 2477–2512.

DOI: 10.1098/rsta.2004.1452

Google Scholar

[52] N. Yamauchi, K. Demizu, N. Ueda, N.K. Cuong, T. Sone, Y. Hirose, Friction and wear of DLC films on magnesium alloy, Surf. Coat. Technol. 193 (2005) 277–282.

DOI: 10.1016/j.surfcoat.2004.07.056

Google Scholar

[53] M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cançado, A. Jorio, R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy, Phys. Chem. Chem. Phys. PCCP. 9 (2007) 1276–1291.

DOI: 10.1039/b613962k

Google Scholar

[54] A.C. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon, Phys. Rev. B. 64 (2001).

DOI: 10.1103/PhysRevB.64.075414

Google Scholar

[55] M. Jelínek, K. Smetana, T. Kocourek, B. Dvořánková, J. Zemek, J. Remsa, T. Luxbacher, Biocompatibility and sp3/sp2 ratio of laser created DLC films, Mater. Sci. Eng. B. 169 (2010) 89–93.

DOI: 10.1016/j.mseb.2010.01.010

Google Scholar

[56] Y. Liu, A. Erdemir, E.I. Meletis, A study of the wear mechanism of diamond-like carbon films, Surf. Coat. Technol. 82 (1996) 48–56.

DOI: 10.1016/0257-8972(95)02623-1

Google Scholar

[57] A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B. 61 (2000) 14095–14107.

DOI: 10.1103/PhysRevB.61.14095

Google Scholar

[58] G. Shu, B. Dai, V.G. Ralchenko, A.A. Khomich, E.E. Ashkinazi, A.P. Bolshakov, S.N. Bokova-Sirosh, K. Liu, J. Zhao, J. Han, J. Zhu, Epitaxial growth of mosaic diamond: Mapping of stress and defects in crystal junction with a confocal Raman spectroscopy, J. Cryst. Growth. 463 (2017) 19–26.

DOI: 10.1016/j.jcrysgro.2017.01.045

Google Scholar

[59] B. Pandey, S. Hussain, Effect of nickel incorporation on the optical properties of diamond-like carbon (DLC) matrix, J. Phys. Chem. Solids. 72 (2011) 1111–1116.

DOI: 10.1016/j.jpcs.2011.06.003

Google Scholar

[60] A.R. Warmuth, W. Sun, P.H. Shipway, The roles of contact conformity, temperature and displacement amplitude on the lubricated fretting wear of a steel-on-steel contact, R. Soc. Open Sci. 3 (2016) 150637.

DOI: 10.1098/rsos.150637

Google Scholar