[1]
A. Khodayari, H. Elmkhah, M. Alizadeh, A. Maghsoudipour, Modified diamond-like carbon (Cr-DLC) coating applied by PACVD-CAPVD hybrid method: Characterization and evaluation of tribological and corrosion behavior, Diam. Relat. Mater. 136 (2023) 109968.
DOI: 10.1016/j.diamond.2023.109968
Google Scholar
[2]
Y. Liu, A. Erdemir, E.I. Meletis, Influence of environmental parameters on the frictional behavior of DLC coatings, Surf. Coat. Technol. 94 (1997) 463–468.
DOI: 10.1016/S0257-8972(97)00450-7
Google Scholar
[3]
X. Cao, L. Shang, G. Zhang, Q. Ding, Simultaneously Improving the Corrosion Resistance and Wear Resistance of Internal Surface of Aluminum Pipe by Using Multilayer Diamond-Like Carbon-Si Coatings, J. Mater. Eng. Perform. 31 (2022) 5622–5629.
DOI: 10.1007/s11665-022-06678-8
Google Scholar
[4]
A. Varma, V. Palshin, E.I. Meletis, C. Fountzoulas, Tribological behaviour of Si–DLC coatings, Surf. Eng. 15 (1999) 301–306.
DOI: 10.1179/026708499101516641
Google Scholar
[5]
L. Natrayan, P. Gaur, A. Merneedi, S. Kaliappan, P.P. Patil, V. Sivaprakash, M.D. Chewaka, Investigation of Tribological Behaviour on DLC Coatings for AA5051 using DC Sputtering, Adsorpt. Sci. Technol. 2022 (2022) e4574218.
DOI: 10.1155/2022/4574218
Google Scholar
[6]
N. Ali, Y. Kousar, T.I. Okpalugo, V. Singh, M. Pease, A.A. Ogwu, J. Gracio, E. Titus, E.I. Meletis, M.J. Jackson, Human micro-vascular endothelial cell seeding on Cr-DLC thin films for mechanical heart valve applications, Thin Solid Films. 515 (2006) 59–65.
DOI: 10.1016/j.tsf.2005.12.023
Google Scholar
[7]
R. Oshima, K. Iizuka, A. Ya. Vul, F.M. Shakhov, Single crystal diamond particles formed by the reaction of carbon black and solid alcohol under high-pressure and high-temperature, J. Cryst. Growth. 587 (2022) 126646.
DOI: 10.1016/j.jcrysgro.2022.126646
Google Scholar
[8]
O.A. Streletskiy, O.Y. Nishchak, I.A. Zavidovskiy, K.I. Maslakov, A.V. Pavlikov, Sp-based thin films synthesized by magnetron sputtering of dehydrohalogenated Polyvinylidenchloride, Thin Solid Films. 739 (2021) 138993.
DOI: 10.1016/j.tsf.2021.138993
Google Scholar
[9]
M.R. Goyal, S. Kulkarni, Advances in Green and Sustainable Nanomaterials: Applications in Energy, Biomedicine, Agriculture, and Environmental Science, CRC Press, 2023.
DOI: 10.1201/9781003328322
Google Scholar
[10]
D.D. Kumar, P. Kuppusami, G.S. Kaliaraj, S.S. Sana, A.M.K. Kirubaharan, Tribological Properties of Carbon-Based Coatings, in: Tribol. Charact. Surf. Coat., John Wiley & Sons, Ltd, 2022: p.115–137.
DOI: 10.1002/9781119818878.ch6
Google Scholar
[11]
B. Ali, H. Xu, R.T. Sang, I.V. Litvinyuk, M. Rybachuk, Optimised diamond to graphite conversion via a metastable sp1-bonded carbon chain formation under an ultra-short femtosecond (30 fs) laser irradiation, Carbon. 204 (2023) 575–586.
DOI: 10.1016/j.carbon.2023.01.012
Google Scholar
[12]
S.K. Pal, J. Jiang, E.I. Meletis, Effects of N-doping on the microstructure, mechanical and tribological behavior of Cr-DLC films, Surf. Coat. Technol. 201 (2007) 7917–7923.
DOI: 10.1016/j.surfcoat.2007.03.036
Google Scholar
[13]
F. Picollo, A. Battiato, F. Bosia, F.S. Muta, P. Olivero, V. Rigato, S. Rubanov, Creation of pure non-crystalline diamond nanostructures via room-temperature ion irradiation and subsequent thermal annealing, Nanoscale Adv. 3 (2021) 4156–4165.
DOI: 10.1039/D1NA00136A
Google Scholar
[14]
V. Palshin, E.I. Meletis, S. Ves, S. Logothetidis, Characterization of ion-beam-deposited diamond-like carbon films, Thin Solid Films. 270 (1995) 165–172.
DOI: 10.1016/0040-6090(95)06912-7
Google Scholar
[15]
I. Alaefour, S. Shahgaldi, J. Zhao, X. Li, Synthesis and Ex-Situ characterizations of diamond-like carbon coatings for metallic bipolar plates in PEM fuel cells, Int. J. Hydrog. Energy. 46 (2021) 11059–11070.
DOI: 10.1016/j.ijhydene.2020.09.259
Google Scholar
[16]
F. Lofaj, M. Kabátová, L. Kvetková, J. Dobrovodský, The effects of deposition conditions on hydrogenation, hardness and elastic modulus of W-C:H coatings, J. Eur. Ceram. Soc. 40 (2020) 2721–2730.
DOI: 10.1016/j.jeurceramsoc.2019.12.062
Google Scholar
[17]
K. Malisz, B. Świeczko-Żurek, A. Sionkowska, Preparation and Characterization of Diamond-like Carbon Coatings for Biomedical Applications—A Review, Materials. 16 (2023) 3420.
DOI: 10.3390/ma16093420
Google Scholar
[18]
F.O. Kolawole, O.S. Kolade, S.A. Bello, S.K. Kolawole, A.T. Ayeni, T.F. Elijah, S.G. Borisade, A.P. Tschiptschin, The improvement of diamond-like carbon coatings for tribological and tribo-corrosion applications in automobile engines: an updated review study, Int. J. Adv. Manuf. Technol. 126 (2023) 2295–2322.
DOI: 10.1007/s00170-023-11282-8
Google Scholar
[19]
V.V. Siva Kumar, Nanocrystalline diamond films growth by microwave ECR CVD: Studies of structural and photoconduction properties, Vacuum. 131 (2016) 259–263.
DOI: 10.1016/j.vacuum.2016.07.005
Google Scholar
[20]
P. Wongpanya, T. Wongpinij, P. Photongkam, J. Siritapetawee, Improvement in corrosion resistance of 316L stainless steel in simulated body fluid mixed with antiplatelet drugs by coating with Ti-doped DLC films for application in biomaterials, Corros. Sci. 208 (2022) 110611.
DOI: 10.1016/j.corsci.2022.110611
Google Scholar
[21]
M. Zawischa, V. Weihnacht, J. Kaspar, M. Zimmermann, Effect of doping elements to hydrogen-free amorphous carbon coatings on structure and mechanical properties with special focus on crack resistance, Mater. Sci. Eng. A. 857 (2022) 144086.
DOI: 10.1016/j.msea.2022.144086
Google Scholar
[22]
A. Rosenkranz, H.L. Costa, M.Z. Baykara, A. Martini, Synergetic effects of surface texturing and solid lubricants to tailor friction and wear – A review, Tribol. Int. 155 (2021) 106792.
DOI: 10.1016/j.triboint.2020.106792
Google Scholar
[23]
F.L. Wang, J.C. Jiang, E.I. Meletis, Microstructural evolution of Co nanostructures in diamond-like carbon by plasma-assisted processing, J. Appl. Phys. 95 (2004) 5069–5074.
DOI: 10.1063/1.1691181
Google Scholar
[24]
A. Varma, V. Palshin, E.I. Meletis, Structure–property relationship of Si-DLC films, Surf. Coat. Technol. 148 (2001) 305–314.
DOI: 10.1016/S0257-8972(01)01350-0
Google Scholar
[25]
V. Singh, J.C. Jiang, E.I. Meletis, Cr-diamondlike carbon nanocomposite films: Synthesis, characterization and properties, Thin Solid Films. 489 (2005) 150–158. https://doi.org/10.1016/j.tsf. 2005.04.104.
DOI: 10.1016/j.tsf.2005.04.104
Google Scholar
[26]
Z.Q. Qi, E.I. Meletis, Mechanical and tribological behavior of nanocomposite multilayered Cr/a-C thin films, Thin Solid Films. 479 (2005) 174–181.
DOI: 10.1016/j.tsf.2004.12.009
Google Scholar
[27]
M.E. Arslan, M.Ş. Kurt, N. Aslan, A. Kadi, S. Öner, Ş. Çobanoğlu, A. Yazici, Structural, biocompatibility, and antibacterial properties of Ge–DLC nanocomposite for biomedical applications, J. Biomed. Mater. Res. B Appl. Biomater. 110 (2022) 1667–1674.
DOI: 10.1002/jbm.b.35027
Google Scholar
[28]
L. Cao, J. Liu, Y. Wan, J. Pu, Corrosion and tribocorrosion behavior of W doped DLC coating in artificial seawater, Diam. Relat. Mater. 109 (2020) 108019.
DOI: 10.1016/j.diamond.2020.108019
Google Scholar
[29]
A.W. Zia, M. Birkett, Deposition of diamond-like carbon coatings: Conventional to non-conventional approaches for emerging markets, Ceram. Int. 47 (2021) 28075–28085.
DOI: 10.1016/j.ceramint.2021.07.005
Google Scholar
[30]
S. Atta, U. NarendraKumar, K.V.A.N.P.S. Kumar, D.P. Yadav, S. Dash, Recent Developments and Applications of TiN-Based Films Synthesized by Magnetron Sputtering, J. Mater. Eng. Perform. (2023).
DOI: 10.1007/s11665-023-08273-x
Google Scholar
[31]
A. Jedrzejczak, D. Batory, M. Prowizor, M. Dominik, M. Smietana, M. Cichomski, A. Kisielewska, W. Szymanski, W. Kozlowski, M. Dudek, Titanium(IV) isopropoxide as a source of titanium and oxygen atoms in carbon based coatings deposited by Radio Frequency Plasma Enhanced Chemical Vapour Deposition method, Thin Solid Films. 693 (2020) 137697.
DOI: 10.1016/j.tsf.2019.137697
Google Scholar
[32]
J. Robertson, Diamond-like amorphous carbon, Mater. Sci. Eng. R Rep. 37 (2002) 129–281.
DOI: 10.1016/S0927-796X(02)00005-0
Google Scholar
[33]
W. Kulisch, S. Ulrich, Parameter spaces for the nucleation and the subsequent growth of cubic boron nitride films, Thin Solid Films. 423 (2003) 183–195.
DOI: 10.1016/S0040-6090(02)00731-9
Google Scholar
[34]
S. Ulrich, H. Holleck, H. Leiste, L. Niederberger, E. Nold, K. Sell, M. Stüber, J. Ye, C. Ziebert, P. Pesch, S. Sattel, Nano-scale, multi-functional coatings in the material system B–C–N–H, Surf. Coat. Technol. 200 (2005) 7–13.
DOI: 10.1016/j.surfcoat.2005.02.142
Google Scholar
[35]
P. Gupta, V. Singh, E.I. Meletis, Tribological behavior of plasma-enhanced CVD a-C:H films. Part I: effect of processing parameters, Tribol. Int. 37 (2004) 1019–1029.
DOI: 10.1016/j.triboint.2004.07.020
Google Scholar
[36]
J. Li, B. Li, Y. Zuo, H. Liu, Y. Bai, H. Yuan, Z. Li, K. Xu, G. Chen, Application of dual radio frequency inductive coupled plasma into CVD diamond growth, Vacuum. 154 (2018) 174–176.
DOI: 10.1016/j.vacuum.2018.04.054
Google Scholar
[37]
V. Singh, V. Palshin, R.C. Tittsworth, E.I. Meletis, Local structure of composite Cr-containing diamond-like carbon thin films, Carbon. 44 (2006) 1280–1286.
DOI: 10.1016/j.carbon.2005.10.048
Google Scholar
[38]
P. Vijai Bharathy, Q. Yang, M.S.R.N. Kiran, J. Rha, D. Nataraj, D. Mangalaraj, Reactive biased target ion beam deposited W–DLC nanocomposite thin films — Microstructure and its mechanical properties, Diam. Relat. Mater. 23 (2012) 34–43.
DOI: 10.1016/j.diamond.2011.12.016
Google Scholar
[39]
T. Takeno, T. Komiyama, H. Miki, T. Takagi, T. Aoyama, XPS and TEM study of W-DLC/DLC double-layered film, Thin Solid Films. 517 (2009) 5010–5013.
DOI: 10.1016/j.tsf.2009.03.033
Google Scholar
[40]
Zh.Q. Yao, P. Yang, N. Huang, H. Sun, J. Wang, Structural, mechanical and hydrophobic properties of fluorine-doped diamond-like carbon films synthesized by plasma immersion ion implantation and deposition (PIII–D), Appl. Surf. Sci. 230 (2004) 172–178.
DOI: 10.1016/j.apsusc.2004.02.044
Google Scholar
[41]
L.G. Jacobsohn, S.S. Camargo Jr, F.L. Freire Jr, Fluorinated aC: H films investigated by thermal-induced gas effusion, Diam. Relat. Mater. 11 (2002) 1831–1836. https://doi.org/.
DOI: 10.1016/S0925-9635(02)00167-X
Google Scholar
[42]
M. Venkatesh, S. Taktak, E.I. Meletis, Synthesis of Ag-doped hydrogenated carbon thin films by a hybrid PVD–PECVD deposition process, Bull. Mater. Sci. 37 (2014) 1669–1676.
DOI: 10.1007/s12034-014-0728-4
Google Scholar
[43]
L. Ji, H. Li, F. Zhao, J. Chen, H. Zhou, Microstructure and mechanical properties of Mo/DLC nanocomposite films, Diam. Relat. Mater. 17 (2008) 1949–1954.
DOI: 10.1016/j.diamond.2008.04.018
Google Scholar
[44]
H.E. Sliney, Solid lubricant materials for high temperatures—a review, Tribol. Int. 15 (1982) 303–315.
DOI: 10.1016/0301-679X(82)90089-5
Google Scholar
[45]
A. Erdemir, C. Donnet, Tribology of diamond-like carbon films: recent progress and future prospects, J. Phys. Appl. Phys. 39 (2006) R311.
DOI: 10.1088/0022-3727/39/18/R01
Google Scholar
[46]
R. Karslioglu, H. Akbulut, Comparison microstructure and sliding wear properties of nickel–cobalt/CNT composite coatings by DC, PC and PRC current electrodeposition, Appl. Surf. Sci. 353 (2015) 615–627.
DOI: 10.1016/j.apsusc.2015.06.161
Google Scholar
[47]
V. Palshin, R.C. Tittsworth, C.G. Fountzoulas, E.I. Meletis, X-ray absorption spectroscopy, simulation and modeling of Si-DLC films, J. Mater. Sci. 37 (2002) 1535–1539.
DOI: 10.1023/A:1014960616824
Google Scholar
[48]
Y. Liu, A. Erdemir, E.I. Meletis, An investigation of the relationship between graphitization and frictional behavior of DLC coatings, Surf. Coat. Technol. 86 (1996) 564–568.
DOI: 10.1016/S0257-8972(96)03057-5
Google Scholar
[49]
Y. Liu, E.I. Meletis, Evidence of graphitization of diamond-like carbon films during sliding wear, J. Mater. Sci. 32 (1997) 3491–3495.
DOI: 10.1023/A:1018641304944
Google Scholar
[50]
V. Thapliyal, M.E. Alabdulkarim, D.R. Whelan, B. Mainali, J.L. Maxwell, A concise review of the Raman spectra of carbon allotropes, Diam. Relat. Mater. 127 (2022) 109180.
DOI: 10.1016/j.diamond.2022.109180
Google Scholar
[51]
A.C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond, Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 362 (2004) 2477–2512.
DOI: 10.1098/rsta.2004.1452
Google Scholar
[52]
N. Yamauchi, K. Demizu, N. Ueda, N.K. Cuong, T. Sone, Y. Hirose, Friction and wear of DLC films on magnesium alloy, Surf. Coat. Technol. 193 (2005) 277–282.
DOI: 10.1016/j.surfcoat.2004.07.056
Google Scholar
[53]
M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cançado, A. Jorio, R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy, Phys. Chem. Chem. Phys. PCCP. 9 (2007) 1276–1291.
DOI: 10.1039/b613962k
Google Scholar
[54]
A.C. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon, Phys. Rev. B. 64 (2001).
DOI: 10.1103/PhysRevB.64.075414
Google Scholar
[55]
M. Jelínek, K. Smetana, T. Kocourek, B. Dvořánková, J. Zemek, J. Remsa, T. Luxbacher, Biocompatibility and sp3/sp2 ratio of laser created DLC films, Mater. Sci. Eng. B. 169 (2010) 89–93.
DOI: 10.1016/j.mseb.2010.01.010
Google Scholar
[56]
Y. Liu, A. Erdemir, E.I. Meletis, A study of the wear mechanism of diamond-like carbon films, Surf. Coat. Technol. 82 (1996) 48–56.
DOI: 10.1016/0257-8972(95)02623-1
Google Scholar
[57]
A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B. 61 (2000) 14095–14107.
DOI: 10.1103/PhysRevB.61.14095
Google Scholar
[58]
G. Shu, B. Dai, V.G. Ralchenko, A.A. Khomich, E.E. Ashkinazi, A.P. Bolshakov, S.N. Bokova-Sirosh, K. Liu, J. Zhao, J. Han, J. Zhu, Epitaxial growth of mosaic diamond: Mapping of stress and defects in crystal junction with a confocal Raman spectroscopy, J. Cryst. Growth. 463 (2017) 19–26.
DOI: 10.1016/j.jcrysgro.2017.01.045
Google Scholar
[59]
B. Pandey, S. Hussain, Effect of nickel incorporation on the optical properties of diamond-like carbon (DLC) matrix, J. Phys. Chem. Solids. 72 (2011) 1111–1116.
DOI: 10.1016/j.jpcs.2011.06.003
Google Scholar
[60]
A.R. Warmuth, W. Sun, P.H. Shipway, The roles of contact conformity, temperature and displacement amplitude on the lubricated fretting wear of a steel-on-steel contact, R. Soc. Open Sci. 3 (2016) 150637.
DOI: 10.1098/rsos.150637
Google Scholar