[1]
M. Shkir, Z. R. Khan, M. Anis, S. S. Shaikh, S. AlFaify, A comprehensive study of opto-electrical and nonlinear properties of Cu@CdS thin films for optoelectronics, Chin. J. Phys. 63 (2020) 51-62.
DOI: 10.1016/j.cjph.2019.10.017
Google Scholar
[2]
N. Nithya and G. Boopathi, Synthesis and Characterization of CdS and Ag Doped CdS Naboparticle, International Journal of Science and Research (IJSR) 4 (2015) 2299-2302.
Google Scholar
[3]
R. Koole, E. Groeneveld, D. Vanmaekelbergh, A. Meijerink, C. de Mello Donegá. Size Effects on Semiconductor Nanoparticles. In: de Mello Donegá, C. (eds) Nanoparticles. Springer, Berlin, Heidelberg. Chapter 2 (2014) 13-51.
DOI: 10.1007/978-3-662-44823-6_2
Google Scholar
[4]
S. J. Ikhmayies, R. N. Ahmad-Bitar, Dependence of the photoluminescence of CdS:In thin films on the excitation power of the laser, J. Lumin. 149 (2014) 240-244.
DOI: 10.1016/j.jlumin.2014.01.046
Google Scholar
[5]
R. Sharma, G. Cai, D. V. Shinde, S. A. Patil, S. Shaikh, A. V. Ghule, R. S. Mane , S.-H. Han, Polyelectrolyte multilayer-assisted fabrication of p-Cu2S/n-CdS heterostructured thin-film phototransistors, J. Mater. Chem. C 2 (2014) 8012-8017.
DOI: 10.1039/c4tc01428f
Google Scholar
[6]
M. Green, E. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis and X. Hao. Solar cell efficiency tables (version 57). Prog. Photovolt. Res. Appl. 29 (2021) 3-15.
DOI: 10.1002/pip.3371
Google Scholar
[7]
N. A. S. Omar, Y. W. Fen, J. Abdullah, N. A. A. Anas, N. S. M. Ramdzan, M. A. Mahdi, Optical and structural properties of cadmium sulphide quantum dots based thin films as potential sensing material for dengue virus E-protein, Results in Physics 11 (2018) 734-739.
DOI: 10.1016/j.rinp.2018.10.032
Google Scholar
[8]
N. A. S. Omar, Y. W. Fen, S. Saleviter, Y. M. Kamil, W. M. E. M. M. Daniyal, J. Abdullah, M. A. Mahdi, Experimental evaluation on surface plasmon resonance sensor performance based on sensitive hyperbranched polymer nanocomposite thin films, Sens. Actuators A Phys. 303 (2020) 111830. 10 pp.
DOI: 10.1016/j.sna.2020.111830
Google Scholar
[9]
S. Lin, L. Shan, C. Ma, M. Yuan, Z. Fang, Y. Xiao, L: Dong, D. Li, Y. Guo, High-Performance α-Bi2O3/CdS Heterojunction Photocatalyst: Innovative Design, Electrochemical Performance and DFT Calculation, J. Nano Res. 71 (2022) 13-28.
DOI: 10.4028/www.scientific.net/jnanor.71.13
Google Scholar
[10]
C. Jing, Y. Zhang, J. Zheng, S. Ge, J. Lin, D. Pan, N. Naik, Z. Guo, In-situ constructing visible light CdS/Cd-MOF photocatalyst with enhanced photodegradation of methylene blue, Particuology 69 (2022) 111-122.
DOI: 10.1016/j.partic.2021.11.013
Google Scholar
[11]
S. S. Boxi, S. Paria, Effect of silver doping on TiO2, CdS, and ZnS nanoparticles for the photocatalytic degradation of metronidazole under visible light, RSC Adv. 4 (2014) 37752-37760.
DOI: 10.1039/c4ra06192f
Google Scholar
[12]
O. Vigil-Galán, E. Sánchez-Meza, C. M. Ruiz, J. Sastré-Hernández, A. Morales-Acevedo, F. Cruz-Gandarilla, J. Aguilar-Hernández, E. Saucedo, V. Bermúdez, Physical properties of Bi doped CdTe thin films grown by CSVT and their influence on the CdS/CdTe solar cells PV-properties, Thin Solid Films 515 (2007) 5819-5823.
DOI: 10.1016/j.tsf.2006.12.050
Google Scholar
[13]
E. A. Martín-Tovar, R. Castro-Rodríguez, A. Iribarren, Isoelectronic CdTe-doped ZnO thin films grown by PLD, Mater. Lett. 139 (2015) 352-354.
DOI: 10.1016/j.matlet.2014.10.068
Google Scholar
[14]
E. Hernández-Rodríguez, M. Loeza-Poot, I. Riech, V. Rejón, J. L. Peña, A comparative study of CdS:F and CdS:O thin films deposited by reactive RF-sputtering technique for window layer application in solar cells, J. Phys. D: Appl. Phys. 48 (2015) 255102 (6pp).
DOI: 10.1088/0022-3727/48/25/255102
Google Scholar
[15]
K. Matsune, H. Oda, T. Toyama, H. Okamoto, Y. Kudriavysev, R. Asomoza, 15% Efficiency CdS/CdTe thin film solar cells using CdS layers doped with metal organic compounds, Sol. Energy Mater. Sol. Cells 90 (2006) 3108-3114.
DOI: 10.1016/j.solmat.2006.06.030
Google Scholar
[16]
S. Yılmaz, The investigation of spray pyrolysis grown CdS thin films doped with flourine atoms, Appl. Surf. Sci. 357 (2015) 873-879.
DOI: 10.1016/j.apsusc.2015.09.098
Google Scholar
[17]
A. Mukherjee, P. Ghosh, A. A. Aboud, P. Mitra, Influence of copper incorporation in CdS: Structural and morphological studies, J. Phys. Chem. Solids 184 (2016) 101-109.
DOI: 10.1016/j.matchemphys.2016.09.030
Google Scholar
[18]
C. Aiempanakit, M. Aiempanakit, W. Thongjoon, S. Pudwat, K. Aiempanakit, Characterization and electrochromic properties of multi-morphology NiO films prepared by CBD and DC Techniques, Optik 287 (2023) 171131. 9 pp.
DOI: 10.1016/j.ijleo.2023.171131
Google Scholar
[19]
K. Rodríguez-Rosales, J. G. Quiñones-Galván, A. Guillén-Cervantes, E. Campos-González, J. Santos-Cruz, S. A. Mayén-Hernández, J. S. Arias-Cerón, M. de la L. Olvera, O. Zelaya-Angel, L. A. Hernández-Hernández, Nanocrystalline-CdS thin films grown on flexible PET-substrates by chemical bath deposition, Mater. Res. Express 4 (2017) 075904 (8 pages).
DOI: 10.1088/2053-1591/aa7858
Google Scholar
[20]
D. H. Rose, F. S. Hasoon, R. G. Dhere, D. S. Albin, R. M. Ribelin, X. S. Li, Y. Mahathongdy, T. A. Gessert, P. Sheldon, Fabrication procedures and process sensitivities for CdS/CdTe solar cells, Prog. Photovolt: Res. Appl. 7 (1999) 331-340.
DOI: 10.1002/(sici)1099-159x(199909/10)7:5<331::aid-pip257>3.0.co;2-p
Google Scholar
[21]
P. J. Sebastian, p‐type CdS thin films formed by in situ Cu doping in the chemical bath, Appl. Phys. Lett. 62 (1993) 2956-2958.
DOI: 10.1063/1.109181
Google Scholar
[22]
P. Kumar, N. Saxena, A. Agarwal, V. Gupta, Influence of Ag doping concentration on structural and optical properties of CdS thin film, AIP Conf. Proc. 1661 (2015) 080017
DOI: 10.1063/1.4915408
Google Scholar
[23]
S. Chandel, P. R. Ajan, A. J. Vallamattom, V. P. N. Nampoori, P. Radhakrishnan, International Conference on Fiber Optics and Photonics, (2012) © OSA Technical Digest (online) (Optica Publishing Group, 2012), paper M3A.6. Page 1.
Google Scholar
[24]
S. Oros-Ruiz, A. Hernández-Gordillo, C. García-Mendoza, A. A. Rodríguez-Rodríguez, R. Gómez, Comparative activity of CdS nanofibers superficially modified by Au, Cu, and Ni nanoparticles as co-catalysts for photocatalytic hydrogen production under visible light, J. Chem. Technol. Biotechnol. 91 (2016) 2205-2210.
DOI: 10.1002/jctb.4992
Google Scholar
[25]
M. Becerril, H. Silva-López, O. Zelaya-Angel, J. R. Vargas-García, Au doping of CdS polycrystalline films prepared by co-sputtering of CdS–Cd-Au targets, Superficies y Vacío 25 (2012) 214-217.
DOI: 10.47566/2012_syv25_1-040214
Google Scholar
[26]
K. Takayama, K. Fujiwara, T. Kume, S. Naya, H. Tada, Electron Filtering by an Intervening ZnS Thin Film in the Gold Nanoparticle-Loaded CdS Plasmonic Photocatalyst, J. Phys. Chem. Lett. 8 (2017) 86-90.
DOI: 10.1021/acs.jpclett.6b02642
Google Scholar
[27]
R. Prasanna-Kumari, D. Herrera-Molina, A. Fernández-Pérez, J. E. Diosa, E. Mosquera-Vargas, Study of the Properties of CdS:Al (R = [Al3+]/[Cd2+] = 0.30, 0.40, 0.50) Thin Films Grown by the CBD Method in an Ammonia-Free System, Molecules 28 (2023) 3626, 12 pp.
DOI: 10.3390/molecules28083626
Google Scholar
[28]
T. Schneller, R. Waser, M. Kosec and D. Payne. Eds., Chemical Solution Deposition of Functional Oxide Thin Films. 2013. Springer Vienna, Vienna
DOI: 10.1007/978-3-211-99311-8
Google Scholar
[29]
A. S. Najm, H. S. Naeem, H. S. Majdi, S. Hasbullah, H. A. Hasan, K. Sopian, B. Bais, H. J. Al-Iessa, H. A. Dhahad, J. M. Ali, A. J. Sultan, An in-depth analysis of nucleation and growth mechanism of CdS thin film synthesized by chemical bath deposition (CBD) technique, Sci. Rep. 12 (2022) 15295, 21 pp.
DOI: 10.1038/s41598-022-19340-z
Google Scholar
[30]
A. Flores-Pacheco, J. I. Contreras-Rascón, J. Díaz-Reyes, P. D. Ángel-Vicente, J. P. Enríquez, S. J. Castillo, M. E. Álvarez-Ramos, Stimulation of the photoluminescent properties of CBD-CdS thin films achieved by structural modifications resulting from Ag+ doping, Phys. Status Solidi RRL 11 (2017) 1700134 (4 pages).
DOI: 10.1002/pssr.201700134
Google Scholar
[31]
J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben. Handbook of X-ray Photoelectron Spectroscopy. 1992. Second, Perkin-Elmer Corporation Physical Electronics Division, Edein Prairie, Minessota, USA
Google Scholar
[32]
A. Naumkin, A. Kraut-Vass, S. Gaarenstroom, C. Powell, NIST X-ray Photoelectron Spectroscopy Database. 2012.
Google Scholar
[33]
P. Shindov, P. Philipov, R. Kakanakov, S. Kaneva, T. Anastasova. 2007. ISSE 2007-30th. Int. Spring Semin. Electron. Technol. 2007; Conf. Proc. Emerg. Technol. Electron. Packag 219.
DOI: 10.1109/isse.2007.4432851
Google Scholar
[34]
S. Tougaard, Quantitative analysis of the inelastic background in surface electron spectroscopy, Surf. Interface Anal. 11 (1988) 453-472.
DOI: 10.1002/sia.740110902
Google Scholar
[35]
M. Fantauzzi, D. Atzei, B. Elsener, P. Lattanzi, A. Rossi, XPS and XAES analysis of copper, arsenic and sulfur chemical state in enargites, Surf. Interface Anal. 38 (2006) 922-930.
DOI: 10.1002/sia.2348
Google Scholar
[36]
D. N. G. Krishna, J. Philip, Review on surface-characterization applications of X-ray photoelectron spectroscopy (XPS): Recent developments and challenges, Appl. Surf. Sci. Adv. 12 (2022) 100332. 30 pp.
DOI: 10.1016/j.apsadv.2022.100332
Google Scholar
[37]
J. Ohyama, Y. Hitomi, Y. Higuchi, T. Tanaka, Size Controlled Synthesis of Gold Nanoparticles by Porphyrin with Four Sulfur Atoms, Top. Catal. 52 (2009) 852-859.
DOI: 10.1007/s11244-009-9229-x
Google Scholar
[38]
N. Pauly, F. Yubero, S. Tougaard, Quantitative analysis of satellite structures in XPS spectra of gold and silver, Appl. Surf. Sci. 383 (2016) 317-323.
DOI: 10.1016/j.apsusc.2016.03.185
Google Scholar
[39]
L. Lisco, P. M. Kaminski, A. Abbas, K. Bass, J. W. Bowers, G. Claudio, M. Losurdo, J. M. Walls, The structural properties of CdS deposited by chemical bath deposition and pulsed direct current magnetron sputtering, Thin Solid Films 582 (2015) 323-327.
DOI: 10.1016/j.tsf.2014.11.062
Google Scholar
[40]
S. Graulis, D. Chateigner, R. T. Downs, A. F. T. Yokochi, M. Quirós, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, A. Le Bail, Crystallography Open Database – an open-access collection of crystal structures, J. Appl. Crystallogr. 42 (2009) 726-729.
DOI: 10.1107/s0021889809016690
Google Scholar
[41]
A. Dey, R. Chakraborty, A. K. Mukhopadhyay, Nanoindentation of Soda Lime–Silica Glass: Effect of Loading Rate, Int. J. Appl. Glas. Sci. 2 (2011) 144-155.
DOI: 10.1111/j.2041-1294.2011.00046.x
Google Scholar
[42]
N.E. Fard, R. Fazaeli, R. Ghiasi, Band Gap Energies and Photocatalytic Properties of CdS and Ag/CdS Nanoparticles for Azo Dye Degradation, Chem. Eng. Technol. 39 (2016) 149-157.
DOI: 10.1002/ceat.201500116
Google Scholar
[43]
G. Simon, H. Huang, J. E. Penner-Hahn, S. E. Kesler, L .S. Kao, Oxidation state of gold and arsenic in gold-bearing arsenian pyrite, Am. Mineral. 84 (1999) 1071-1079.
DOI: 10.2138/am-1999-7-809
Google Scholar
[44]
A.E. Saunders, I. Popov, U. Banin, Synthesis of Hybrid CdS−Au Colloidal Nanostructures, J. Phys. Chem. B 110 (2006) 25421–25429.
DOI: 10.1021/jp065594s
Google Scholar
[45]
O. Madelung, Semiconductors: Data Handbook, (2004) Springer Berlin Heidelberg, Berlin, Heidelberg.
Google Scholar
[46]
S. R. Ferrá-González, D. Berman-Mendoza, R. García-Gutiérrez, S. J. Castillo, R. Ramírez-Bon, B. E. Gnade, M. A. Quevedo-López, Optical and structural properties of CdS thin films grown by chemical bath deposition doped with Ag by ion exchange, Optik 125 (2014) 1533-1536.
DOI: 10.1016/j.ijleo.2013.08.035
Google Scholar
[47]
M.P. Chamberlain, C. Trallero-Giner, M. Cardona, Theory of one-phonon Raman scattering in semiconductor microcrystallites, Phys. Rev. B 51 (1995) 1680-1693.
DOI: 10.1103/physrevb.51.1680
Google Scholar
[48]
R. T. Downs, The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals, Progr. Abstr. 19th Gen. Meet. Int. Mineral. Assoc. Kobe, Japan. (2006) 3-13.
Google Scholar
[49]
R. R. Prabhu, M. A. Khadar, Study of optical phonon modes of CdS nanoparticles using Raman spectroscopy, Bull. Mater. Sci. 31 (2008) 511-515.
DOI: 10.1007/s12034-008-0080-7
Google Scholar
[50]
P. Nandakumar, C. Vijayan, M. Rajalakshmi, A. K. Arora, Y. V. G. Murti, Raman spectra of CdS nanocrystals in Nafion: longitudinal optical and confined acoustic phonon modes, Phys. E Low-Dimensional Syst. Nanostructures 11 (2001) 377-383.
DOI: 10.1016/s1386-9477(01)00157-6
Google Scholar
[51]
Y. Park, D. T. Limmer, Renormalization of excitonic properties by polar phonons, J. Chem. Phys. 157 (2022) 104116, 12 pp.
Google Scholar
[52]
G. K. Williamson, R. E. Smallman, III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum, The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 1 (1956) 34-46.
DOI: 10.1080/14786435608238074
Google Scholar
[53]
Y. Li, Z. Jin, N. Tsubaki, Distinctive synthesis of CdS-based photocatalysts based on a Prussian blue analog induction strategy for efficient solar-driven water splitting applications, J. Mater. Chem. C 10 (2022) 18213-18225.
DOI: 10.1039/d2tc03946j
Google Scholar
[54]
O. Secundino-Sánchez, J. Díaz-Reyes, J. F. Sánchez-Ramírez, J. S. Arias-Cerón, M. Galván-Arellano, O. Vázquez-Cuchillo, Controlled synthesis of electrospun TiO2 nanofibers and their photocatalytic application in the decolouration of Remazol Black B azo dye, Catal. Today 392-393 (2022) 13-22.
DOI: 10.1016/j.cattod.2021.10.003
Google Scholar
[55]
A. A. Ziabari, F. E. Ghodsi, Growth, characterization and studying of sol–gel derived CdS nanoscrystalline thin films incorporated in polyethyleneglycol: Effects of post-heat treatment, Sol. Energy Mater. Sol. Cells 105 (2012) 249-262.
DOI: 10.1016/j.solmat.2012.05.014
Google Scholar
[56]
L. E. Brus, A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites, J. Chem. Phys. 79 (1983) 5566-5571.
DOI: 10.1063/1.445676
Google Scholar
[57]
K. J. Chang, S. Froyen, M. L. Cohen, Electronic band structures for zinc-blende and wurtzite CdS, Phys. Rev. B 28 (1983) 4736-4743.
DOI: 10.1103/physrevb.28.4736
Google Scholar
[58]
A. M. Awad, M. Shaban, M. Rabia, The efficiency of M (M = Li, Na, or Cs) doped CdS nanomaterials in optoelectronic applications, Int. J. Energy Res. 46 (2022) 8443-8451.
DOI: 10.1002/er.7640
Google Scholar
[59]
J. Díaz-Reyes, I. G. Vázquez-Gutiérrez, J. I. Contreras-Rascón, A. Flores-Pacheco, M. E. Álvarez-Ramos, Characterization of enhanced optical and structural properties of CBD-CdS thin films by gold ions doping, Indian J. Phys. 97 (2023) 1101–1107.
DOI: 10.1007/s12648-022-02450-9
Google Scholar