The Influence of Reaction Medium pH on the Structure, Optical, and Mechanical Properties of Nanosized Cu-Fe Ferrite Synthesized by the Sol-Gel Autocombustion Method

Article Preview

Abstract:

Nanoscale mixed ferrites with a spinel structure are highly versatile materials widely employed across diverse fields, including engineering, biomedicine, and ecology. This study explores the influence of pH on the structure, morphology, electrophysical, and mechanical properties of CuFe2O4 spinel, synthesized using the sol-gel self-combustion method. The investigation reveals that the pH level significantly impacts the structure formation, even at the gel formation stage, thereby shaping the subsequent structure and properties of the synthesized ferrite. X-ray diffraction (XRD) analysis demonstrates that the dominant phase (>90%) corresponds to the cubic spinel phase with the chemical formula CuFe2O4, belonging to the Fd3m space group. Notably, the pH of the reaction medium exerts a profound influence on the distribution of iron and copper ions within the octahedral and tetrahedral sublattices of the spinel structure. This variation in cationic distribution manifests in notable changes in the synthesized ferrite's magnetic, mechanical, and degradation properties. Furthermore, the study delves into the impact of the synthesized CuFe2O4 spinel as a photocatalyst for degrading organic dyes through the photo-Fenton process. It demonstrates that degradation efficiency is closely related to the ferrite's band gap width and particle size. This study aimed to determine how the pH of the reaction medium impacts the structure, morphology, optical, mechanical, and magnetic characteristics of the nanosized ferrites being synthesized. Furthermore, the synthesized materials were evaluated for their photocatalytic abilities in degrading organic dyes in water. The ferrite powders showcased remarkable dye degradation capabilities via the photo-Fenton process. Degradation efficiency largely hinged on the band gap width and the size of the particles. The most notable outcome was achieved with sample P1, which had particle sizes averaging 12.14 nm. By unraveling the complex relationship between pH, structure, and properties, this research enhances our understanding of the design and optimization of nanoscale mixed ferrites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-84

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Ai et al., Microstructural evolution and catalytic properties of novel high-entropy spinel ferrites MFe2O4 (M= Mg, Co, Ni, Cu, Zn), Ceram. Int. 49(14) (2023) 22941–22951

DOI: 10.1016/j.ceramint.2023.04.119

Google Scholar

[2] N.-U.-H. Khan et al., Impact of cerium substitution cobalt–zinc spinel ferrites for the applications of high frequency devices, Physica B Condens. Matter, 660 (2023) 414873

DOI: 10.1016/j.physb.2023.414873

Google Scholar

[3] P. L. Mahapatra, S. Das, N. A. Keasberry, S. B. Ibrahim, and D. Saha, Copper ferrite inverse spinel-based highly sensitive and selective chemiresistive gas sensor for the detection of formalin adulteration in fish, J. Alloys Compd. 960 (2023) 170792

DOI: 10.1016/j.jallcom.2023.170792

Google Scholar

[4] F. A. Sheikh et al., Synthesis of Ce3+ substituted Ni-Co ferrites for high frequency and memory storage devices by sol-gel route, J. Alloys Compd. 938 (2023) 168637

DOI: 10.1016/j.jallcom.2022.168637

Google Scholar

[5] S. Dlamini, S. Nkosi, T. Moyo, and A. Nhlapo, Structural and magnetic characterization of Co2+ substituted Ni-Zn ferrite nanoparticles synthesized by refluxing co-precipitation and their potential application as gas sensors, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 294, (2023) 116554

DOI: 10.1016/j.mseb.2023.116554

Google Scholar

[6] V. M. Pinto, M. S. Arya, Niharika, V. K. Nilakanthan, K. Kumara, and T. Chandra Shekhara Shetty, Multiferroic bismuth ferrite nanomagnets as potential candidates for spintronics at room temperature, Mater. Today. 55 (2022) 42–45. 2022

DOI: 10.1016/j.matpr.2021.12.104

Google Scholar

[7] I. V. Zavislyak, M. A. Popov, E. D. Solovyova, S. A. Solopan, and A. G. Belous, Dielectric-ferrite film heterostructures for magnetic field controlled resonance microwave components, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 197 (2015) 36–42

DOI: 10.1016/j.mseb.2015.03.008

Google Scholar

[8] A. Chakrabarti et al., Exploration of structural and magnetic aspects of biocompatible cobalt ferrite nanoparticles with canted spin configuration and assessment of their selective anti-leukemic efficacy, J. Magn. Magn. Mater. 563, (2022) 169957

DOI: 10.1016/j.jmmm.2022.169957

Google Scholar

[9] A. Nigam, S. Saini, B. Singh, A. K. Rai, and S. J. Pawar, Zinc doped magnesium ferrite nanoparticles for evaluation of biological properties viz antimicrobial, biocompatibility, and in vitro cytotoxicity, Mater. Today Commun. 31 (2022) 103632

DOI: 10.1016/j.jmmm.2022.169957

Google Scholar

[10] J. A. Stoll et al., Synthesis of manganese zinc ferrite nanoparticles in medical-grade silicone for MRI applications, Int. J. Mol. Sci. 24 (2023) 5685

DOI: 10.3390/ijms24065685

Google Scholar

[11] G. Wang et al., Facile synthesis of manganese ferrite/graphene oxide nanocomposites for controlled targeted drug delivery, J. Magn. Magn. Mater. 401 (2016) 647–650

DOI: 10.1016/j.jmmm.2015.10.096

Google Scholar

[12] D. Lachowicz et al., Enhanced hyperthermic properties of biocompatible zinc ferrite nanoparticles with a charged polysaccharide coating, J. Mater. Chem. B Mater. Biol. Med. 7 (2019) 2962–2973

DOI: 10.1039/c9tb00029a

Google Scholar

[13] D. Lachowicz et al., One-step preparation of highly stable copper–zinc ferrite nanoparticles in water suitable for MRI thermometry, Chem. Mater. 34 (2022) 4001–4018

DOI: 10.1021/acs.chemmater.2c00079

Google Scholar

[14] A. V. Bagade, S. N. Pund, P. A. Nagwade, B. Kumar, S. U. Deshmukh, and A. B. Kanagare, Ni-doped Mg-Zn nano-ferrites: Fabrication, characterization, and visible-light-driven photocatalytic degradation of model textile dyes, Catal. Commun. 181 (2023) 106719

DOI: 10.1016/j.catcom.2023.106719

Google Scholar

[15] S. Kumari, R. Sharma, N. Kondal, and A. Kumari, Alkaline earth metal doped nickel ferrites as a potential material for heavy metal removal from waste water, Mater. Chem. Phys. 301 (203) 127582

DOI: 10.1016/j.matchemphys.2023.127582

Google Scholar

[16] A. Azimi-Fouladi, P. Falak, and S. A. Hassanzadeh-Tabrizi, The photodegradation of antibiotics on nano cubic spinel ferrites photocatalytic systems: A review, J. Alloys Compd. 961 (2023) 171075

DOI: 10.1016/j.jallcom.2023.171075

Google Scholar

[17] H. Yi et al., Efficient antibiotics removal via the synergistic effect of manganese ferrite and MoS2, Chemosphere 288 (2022) 132494

DOI: 10.1016/j.chemosphere.2021.132494

Google Scholar

[18] Z. Wang, J. You, J. Li, J. Xu, X. Li, and H. Zhang, Review on cobalt ferrite as photo-Fenton catalysts for degradation of organic wastewater, Catal. Sci. Technol. 13 (2023) 274–296

DOI: 10.1039/d2cy01300b

Google Scholar

[19] L. Wang et al., The treatment of electroplating wastewater using an integrated approach of interior microelectrolysis and Fenton combined with recycle ferrite, Chemosphere 286 (2022) 131543

DOI: 10.1016/j.chemosphere.2021.131543

Google Scholar

[20] P. J. van der Zaag, Ferrites, Encyclopedia of Materials: Technical Ceramics and Glasses 3 (2021) 217–224

DOI: 10.1016/B978-0-12-803581-8.02337-7

Google Scholar

[21] V. Kotsyubynsky et al., Hydrothermally synthesized CuFe2O4/rGO and CuFe2O4/porous carbon nanocomposites, Appl. Nanosci. 12 (2022) 1131–1138

DOI: 10.1007/s13204-021-01773-z

Google Scholar

[22] S. K. Nath, K. H. Maria, S. Noor, S. S. Sikder, S. M. Hoque, and M. A. Hakim, Magnetic ordering in Ni–Cd ferrite, J. Magn. Magn. Mater, 324(13) (2012) 2116–2120

DOI: 10.1016/j.jmmm.2012.02.023

Google Scholar

[23] L. S. Kaykan, et al., Influence of the preparation method and aluminum ion substitution on the structure and electrical properties of lithium–iron ferrites, Appl. Nanosci. 12 (2022) 503–511

DOI: 10.1007/s13204-021-01691-0

Google Scholar

[24] L. S. Kaykan et al., Effect of pH on structural morphology and magnetic properties of ordered phase of cobalt doped lithium ferrite nanoparticles synthesized by sol-gel auto-combustion method, J. Nano- Electron. Phys. 12(4) (2020) 04008-1-04008–7

DOI: 10.21272/jnep.12(4).04008

Google Scholar

[25] M. Basak, M. L. Rahman, M. F. Ahmed, B. Biswas, and N. Sharmin, The use of X-ray diffraction peak profile analysis to determine the structural parameters of cobalt ferrite nanoparticles using Debye-Scherrer, Williamson-Hall, Halder-Wagner and Size-strain plot: Different precipitating agent approach, J. Alloys Compd. 895 (2022) 162694

DOI: 10.1016/j.jallcom.2021.162694

Google Scholar

[26] A. Sutka and G. Mezinskis, Sol-gel auto-combustion synthesis of spinel-type ferrite nanomaterials, Front. Mater. Sci., 6(2) (2012) 128–141

DOI: 10.1007/s11706-012-0167-3

Google Scholar

[27] R. D. Waldron, Infrared spectra of ferrites, Phys. Rev. 99(6) (1955) 1727–1735

DOI: 10.1103/physrev.99.1727

Google Scholar

[28] K.B. Modi, U.N. Trivedi, M.P. Pandya, S.S. Bhatu, M.C. Chhantbar, H.H. Joshi, Study of elastic properties of magnesium and aluminum co-substituted lithium ferrite near microwave frequencies. Microwaves and Optoelectronics, (2004) 223-230.

Google Scholar

[29] J. N. Pavan Kumar Chintala, S. Bharadwaj, M. Chaitanya Varma, and G. S. V. R. K. Choudary, Impact of cobalt substitution on cation distribution and elastic properties of Ni–Zn ferrite investigated by X-ray diffraction, infrared spectroscopy, and Mössbauer spectral analysis, J. Phys. Chem. Solids 160 (2022) 110298

DOI: 10.1016/j.jpcs.2021.110298

Google Scholar

[30] S.G. Algude, S.M. Patange, S.E. Shirsath, D.R. Mane, and K.M. Jadhav, Elastic behaviour of Cr3+ substituted Co–Zn ferrites, J. Magn. Magn. Mater. 350 (2014) 39–41

DOI: 10.1016/j.jmmm.2013.09.021

Google Scholar

[31] D. Ravinder and T.A. Manga, Elastic behaviour of Cu–Cd ferrites, J. Alloys Compd. 299 (2000) 5–8

DOI: 10.1016/s0925-8388(99)00633-7

Google Scholar

[32] W.A. Wooster, Physical properties and atomic arrangements in crystals, Rep. Prog. Phys. 16, (1953) 62–82

DOI: 10.1088/0034-4885/16/1/302

Google Scholar

[33] O.L. Anderson, Physical Acoustics. Vol. III, Part B, Academic Press, New York, NY, USA, 1965.

Google Scholar

[34] A.K. Sijo, et al., Structure and cation distribution in superparamagnetic NiCrFeO4 nanoparticles using Mössbauer study, J. Magn. Magn. Mater. 497 (2020) 166047

DOI: 10.1016/j.jmmm.2019.166047

Google Scholar

[35] N. A. S. Nogueira et al., X-ray diffraction and Mossbauer studies on superparamagnetic nickel ferrite (NiFe2O4) obtained by the proteic sol–gel method, Mater. Chem. Phys. 163 (2015) 402–406

DOI: 10.1016/j.matchemphys.2015.07.057

Google Scholar

[36] P. A. Udhaya et al., Copper Ferrite nanoparticles synthesised using a novel green synthesis route: Structural development and photocatalytic activity, J. Mol. Struct. 1277 (2023) 134807

DOI: 10.1016/j.molstruc.2022.134807

Google Scholar