[1]
J. Ai et al., Microstructural evolution and catalytic properties of novel high-entropy spinel ferrites MFe2O4 (M= Mg, Co, Ni, Cu, Zn), Ceram. Int. 49(14) (2023) 22941–22951
DOI: 10.1016/j.ceramint.2023.04.119
Google Scholar
[2]
N.-U.-H. Khan et al., Impact of cerium substitution cobalt–zinc spinel ferrites for the applications of high frequency devices, Physica B Condens. Matter, 660 (2023) 414873
DOI: 10.1016/j.physb.2023.414873
Google Scholar
[3]
P. L. Mahapatra, S. Das, N. A. Keasberry, S. B. Ibrahim, and D. Saha, Copper ferrite inverse spinel-based highly sensitive and selective chemiresistive gas sensor for the detection of formalin adulteration in fish, J. Alloys Compd. 960 (2023) 170792
DOI: 10.1016/j.jallcom.2023.170792
Google Scholar
[4]
F. A. Sheikh et al., Synthesis of Ce3+ substituted Ni-Co ferrites for high frequency and memory storage devices by sol-gel route, J. Alloys Compd. 938 (2023) 168637
DOI: 10.1016/j.jallcom.2022.168637
Google Scholar
[5]
S. Dlamini, S. Nkosi, T. Moyo, and A. Nhlapo, Structural and magnetic characterization of Co2+ substituted Ni-Zn ferrite nanoparticles synthesized by refluxing co-precipitation and their potential application as gas sensors, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 294, (2023) 116554
DOI: 10.1016/j.mseb.2023.116554
Google Scholar
[6]
V. M. Pinto, M. S. Arya, Niharika, V. K. Nilakanthan, K. Kumara, and T. Chandra Shekhara Shetty, Multiferroic bismuth ferrite nanomagnets as potential candidates for spintronics at room temperature, Mater. Today. 55 (2022) 42–45. 2022
DOI: 10.1016/j.matpr.2021.12.104
Google Scholar
[7]
I. V. Zavislyak, M. A. Popov, E. D. Solovyova, S. A. Solopan, and A. G. Belous, Dielectric-ferrite film heterostructures for magnetic field controlled resonance microwave components, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 197 (2015) 36–42
DOI: 10.1016/j.mseb.2015.03.008
Google Scholar
[8]
A. Chakrabarti et al., Exploration of structural and magnetic aspects of biocompatible cobalt ferrite nanoparticles with canted spin configuration and assessment of their selective anti-leukemic efficacy, J. Magn. Magn. Mater. 563, (2022) 169957
DOI: 10.1016/j.jmmm.2022.169957
Google Scholar
[9]
A. Nigam, S. Saini, B. Singh, A. K. Rai, and S. J. Pawar, Zinc doped magnesium ferrite nanoparticles for evaluation of biological properties viz antimicrobial, biocompatibility, and in vitro cytotoxicity, Mater. Today Commun. 31 (2022) 103632
DOI: 10.1016/j.jmmm.2022.169957
Google Scholar
[10]
J. A. Stoll et al., Synthesis of manganese zinc ferrite nanoparticles in medical-grade silicone for MRI applications, Int. J. Mol. Sci. 24 (2023) 5685
DOI: 10.3390/ijms24065685
Google Scholar
[11]
G. Wang et al., Facile synthesis of manganese ferrite/graphene oxide nanocomposites for controlled targeted drug delivery, J. Magn. Magn. Mater. 401 (2016) 647–650
DOI: 10.1016/j.jmmm.2015.10.096
Google Scholar
[12]
D. Lachowicz et al., Enhanced hyperthermic properties of biocompatible zinc ferrite nanoparticles with a charged polysaccharide coating, J. Mater. Chem. B Mater. Biol. Med. 7 (2019) 2962–2973
DOI: 10.1039/c9tb00029a
Google Scholar
[13]
D. Lachowicz et al., One-step preparation of highly stable copper–zinc ferrite nanoparticles in water suitable for MRI thermometry, Chem. Mater. 34 (2022) 4001–4018
DOI: 10.1021/acs.chemmater.2c00079
Google Scholar
[14]
A. V. Bagade, S. N. Pund, P. A. Nagwade, B. Kumar, S. U. Deshmukh, and A. B. Kanagare, Ni-doped Mg-Zn nano-ferrites: Fabrication, characterization, and visible-light-driven photocatalytic degradation of model textile dyes, Catal. Commun. 181 (2023) 106719
DOI: 10.1016/j.catcom.2023.106719
Google Scholar
[15]
S. Kumari, R. Sharma, N. Kondal, and A. Kumari, Alkaline earth metal doped nickel ferrites as a potential material for heavy metal removal from waste water, Mater. Chem. Phys. 301 (203) 127582
DOI: 10.1016/j.matchemphys.2023.127582
Google Scholar
[16]
A. Azimi-Fouladi, P. Falak, and S. A. Hassanzadeh-Tabrizi, The photodegradation of antibiotics on nano cubic spinel ferrites photocatalytic systems: A review, J. Alloys Compd. 961 (2023) 171075
DOI: 10.1016/j.jallcom.2023.171075
Google Scholar
[17]
H. Yi et al., Efficient antibiotics removal via the synergistic effect of manganese ferrite and MoS2, Chemosphere 288 (2022) 132494
DOI: 10.1016/j.chemosphere.2021.132494
Google Scholar
[18]
Z. Wang, J. You, J. Li, J. Xu, X. Li, and H. Zhang, Review on cobalt ferrite as photo-Fenton catalysts for degradation of organic wastewater, Catal. Sci. Technol. 13 (2023) 274–296
DOI: 10.1039/d2cy01300b
Google Scholar
[19]
L. Wang et al., The treatment of electroplating wastewater using an integrated approach of interior microelectrolysis and Fenton combined with recycle ferrite, Chemosphere 286 (2022) 131543
DOI: 10.1016/j.chemosphere.2021.131543
Google Scholar
[20]
P. J. van der Zaag, Ferrites, Encyclopedia of Materials: Technical Ceramics and Glasses 3 (2021) 217–224
DOI: 10.1016/B978-0-12-803581-8.02337-7
Google Scholar
[21]
V. Kotsyubynsky et al., Hydrothermally synthesized CuFe2O4/rGO and CuFe2O4/porous carbon nanocomposites, Appl. Nanosci. 12 (2022) 1131–1138
DOI: 10.1007/s13204-021-01773-z
Google Scholar
[22]
S. K. Nath, K. H. Maria, S. Noor, S. S. Sikder, S. M. Hoque, and M. A. Hakim, Magnetic ordering in Ni–Cd ferrite, J. Magn. Magn. Mater, 324(13) (2012) 2116–2120
DOI: 10.1016/j.jmmm.2012.02.023
Google Scholar
[23]
L. S. Kaykan, et al., Influence of the preparation method and aluminum ion substitution on the structure and electrical properties of lithium–iron ferrites, Appl. Nanosci. 12 (2022) 503–511
DOI: 10.1007/s13204-021-01691-0
Google Scholar
[24]
L. S. Kaykan et al., Effect of pH on structural morphology and magnetic properties of ordered phase of cobalt doped lithium ferrite nanoparticles synthesized by sol-gel auto-combustion method, J. Nano- Electron. Phys. 12(4) (2020) 04008-1-04008–7
DOI: 10.21272/jnep.12(4).04008
Google Scholar
[25]
M. Basak, M. L. Rahman, M. F. Ahmed, B. Biswas, and N. Sharmin, The use of X-ray diffraction peak profile analysis to determine the structural parameters of cobalt ferrite nanoparticles using Debye-Scherrer, Williamson-Hall, Halder-Wagner and Size-strain plot: Different precipitating agent approach, J. Alloys Compd. 895 (2022) 162694
DOI: 10.1016/j.jallcom.2021.162694
Google Scholar
[26]
A. Sutka and G. Mezinskis, Sol-gel auto-combustion synthesis of spinel-type ferrite nanomaterials, Front. Mater. Sci., 6(2) (2012) 128–141
DOI: 10.1007/s11706-012-0167-3
Google Scholar
[27]
R. D. Waldron, Infrared spectra of ferrites, Phys. Rev. 99(6) (1955) 1727–1735
DOI: 10.1103/physrev.99.1727
Google Scholar
[28]
K.B. Modi, U.N. Trivedi, M.P. Pandya, S.S. Bhatu, M.C. Chhantbar, H.H. Joshi, Study of elastic properties of magnesium and aluminum co-substituted lithium ferrite near microwave frequencies. Microwaves and Optoelectronics, (2004) 223-230.
Google Scholar
[29]
J. N. Pavan Kumar Chintala, S. Bharadwaj, M. Chaitanya Varma, and G. S. V. R. K. Choudary, Impact of cobalt substitution on cation distribution and elastic properties of Ni–Zn ferrite investigated by X-ray diffraction, infrared spectroscopy, and Mössbauer spectral analysis, J. Phys. Chem. Solids 160 (2022) 110298
DOI: 10.1016/j.jpcs.2021.110298
Google Scholar
[30]
S.G. Algude, S.M. Patange, S.E. Shirsath, D.R. Mane, and K.M. Jadhav, Elastic behaviour of Cr3+ substituted Co–Zn ferrites, J. Magn. Magn. Mater. 350 (2014) 39–41
DOI: 10.1016/j.jmmm.2013.09.021
Google Scholar
[31]
D. Ravinder and T.A. Manga, Elastic behaviour of Cu–Cd ferrites, J. Alloys Compd. 299 (2000) 5–8
DOI: 10.1016/s0925-8388(99)00633-7
Google Scholar
[32]
W.A. Wooster, Physical properties and atomic arrangements in crystals, Rep. Prog. Phys. 16, (1953) 62–82
DOI: 10.1088/0034-4885/16/1/302
Google Scholar
[33]
O.L. Anderson, Physical Acoustics. Vol. III, Part B, Academic Press, New York, NY, USA, 1965.
Google Scholar
[34]
A.K. Sijo, et al., Structure and cation distribution in superparamagnetic NiCrFeO4 nanoparticles using Mössbauer study, J. Magn. Magn. Mater. 497 (2020) 166047
DOI: 10.1016/j.jmmm.2019.166047
Google Scholar
[35]
N. A. S. Nogueira et al., X-ray diffraction and Mossbauer studies on superparamagnetic nickel ferrite (NiFe2O4) obtained by the proteic sol–gel method, Mater. Chem. Phys. 163 (2015) 402–406
DOI: 10.1016/j.matchemphys.2015.07.057
Google Scholar
[36]
P. A. Udhaya et al., Copper Ferrite nanoparticles synthesised using a novel green synthesis route: Structural development and photocatalytic activity, J. Mol. Struct. 1277 (2023) 134807
DOI: 10.1016/j.molstruc.2022.134807
Google Scholar