Effect of Morphological Changes due Conductivity Enhancing Post Treatment on the Absorption and Photoluminescence of AgNW Thin Films

Article Preview

Abstract:

The effect of electrical and thermal treatment on silver nanowire (AgNW) network morphology and its impact on ultraviolet-visible (UV/Vis) and luminescence spectra is reported. The results exhibit that the conductivity enhancing welding of the single AgNWs at connection points changes the network morphology towards an increased proportion of spherical like structures. This inhomogeneity which is particularly noticeable for joule heated films not only gives rise to an inhomogeneous line broadening in absorption and luminescence spectra but also causes a red shift of the surface plasmon resonances in comparison to a non post-treated AgNW network. With increasing inhomogeneity either due to welding or beginning degradation the d-sp interband excitation pathway is especially efficient for the decay of surface plasmons and shows the strong coupling of the corresponding exciting and emitting photons to the surface plasmon excitation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-20

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Cao, J. Li, H. Chen, J. Xue, Transparent electrodes for organic optoelectronic devices: a review, J. Photonics Energy 4 (2014) 40990.

DOI: 10.1117/1.JPE.4.040990

Google Scholar

[2] M. Morales-Masis, S. de Wolf, R. Woods-Robinson, J.W. Ager, C. Ballif, Transparent Electrodes for Efficient Optoelectronics, Adv. Electron. Mater. 3 (2017) 1600529.

DOI: 10.1002/aelm.201600529

Google Scholar

[3] J. Wu, J. Luke, H.K.H. Lee, P. Shakya Tuladhar, H. Cha, S.-Y. Jang, W.C. Tsoi, M. Heeney, H. Kang, K. Lee, T. Kirchartz, J.-S. Kim, J.R. Durrant, Tail state limited photocurrent collection of thick photoactive layers in organic solar cells, Nat. commun. 10 (2019) 5159.

DOI: 10.1038/s41467-019-12951-7

Google Scholar

[4] K. Xian, Y. Liu, J. Liu, J. Yu, Y. Xing, Z. Peng, K. Zhou, M. Gao, W. Zhao, G. Lu, J. Zhang, J. Hou, Y. Geng, L. Ye, Delicate crystallinity control enables high-efficiency P3HT organic photovoltaic cells, J. Mater. Chem. A, 10 (2022) 3418-3429, https://doi.org/10.1039/ dita10161g.

DOI: 10.1039/d1ta10161g

Google Scholar

[5] A. Pokaipisit, M. Horprathum, P. Limsuwan, Effect of Films Thickness on the Properties of ITO Thin Films Prepared by Electron Beam Evaporation, J. Agric. Nat. Resour. 41 (2007) 255–261.

DOI: 10.4028/www.scientific.net/amr.55-57.373

Google Scholar

[6] S. De, T.M. Higgins, P.E. Lyons, E.M. Doherty, P.N. Nirmalraj, W.J. Blau, J.J. Boland, J.N. Coleman, Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios, ACS nano 3 (2009) 1767–1774.

DOI: 10.1021/nn900348c

Google Scholar

[7] H. Wu, D. Kong, Z. Ruan, P.-C. Hsu, S. Wang, Z. Yu, T.J. Carney, L. Hu, S. Fan, Y. Cui, A transparent electrode based on a metal nanotrough network, Nat. Nanotechnol. 8 (2013) 421–425.

DOI: 10.1038/nnano.2013.84

Google Scholar

[8] S. H. Pham, A. Ferri, A. Da, M. M. S. Mohan, V. D. Tran, D. C. Nguyen, P. Viville, R. Lazzaroni, R. Desfeux, P. Leclère, Nanoscale Electrical Investigation of Transparent Conductive Electrodes Based on Silver Nanowire Network. Adv. Mater. Interfaces 9 (2022) 2200019.

DOI: 10.1002/admi.202200019

Google Scholar

[9] C. Sachse, L. Müller-Meskamp, L. Bormann, Y.H. Kim, F. Lehnert, A. Philipp, B. Beyer, K. Leo, Transparent, dip-coated silver nanowire electrodes for small molecule organic solar cells, Org. Electron. 14 (2013) 143–148.

DOI: 10.1016/j.orgel.2012.09.032

Google Scholar

[10] M. Song, D.S. You, K. Lim, S. Park, S. Jung, C.S. Kim, D.-H. Kim, D.-G. Kim, J.-K. Kim, J. Park, Y.-C. Kang, J. Heo, S.-H. Jin, J.H. Park, J.-W. Kang, Highly Efficient and Bendable Organic Solar Cells with Solution-Processed Silver Nanowire Electrodes, Adv. Funct. Mater. 23 (2013) 4177–4184.

DOI: 10.1002/adfm.201202646

Google Scholar

[11] Jt. Hu, J. Li, Gg. Zhang et al., Research on flexible silver nanowire electrode for organic light-emitting devices, Optoelectron. Lett. 17 (2021) 70–74

DOI: 10.1007/s11801-021-0005-x

Google Scholar

[12] J. Krantz, T. Stubhan, M. Richter, S. Spallek, I. Litzov, G.J. Matt, E. Spiecker, C.J. Brabec, Spray-Coated Silver Nanowires as Top Electrode Layer in Semitransparent P3HT:PCBM-Based Organic Solar Cell Devices, Adv. Funct. Mater. 23 (2013) 1711–1717.

DOI: 10.1002/adfm.201202523

Google Scholar

[13] H. Lu, J. Lin, N. Wu, S. Nie, Q. Luo, C.-Q. Ma, Z. Cui, Inkjet printed silver nanowire network as top electrode for semi-transparent organic photovoltaic devices, Appl. Phys. Lett. 106 (2015) 93302.

DOI: 10.1063/1.4913697

Google Scholar

[14] K. C. Tam, P. Kubis, P. Maisch, C. J. Brabec, H.-J. Egelhaaf, Fully printed organic solar modules with bottom and top silvernanowire electrodes, Prog. Photovolt. Res. Appl. 30 (2022) 528–542

DOI: 10.1002/pip.3521

Google Scholar

[15] Y. Sun, B. Gates, B. Mayers, Y. Xia, Crystalline Silver Nanowires by Soft Solution Processing, Nano Lett. 2 (2002) 165–168.

DOI: 10.1021/nl010093y

Google Scholar

[16] S. Fahad, H. Yu, L. Wang, Y. Wang, T. Lin, B.U. Amin, K.-U.-R. Naveed, R.U. Khan, Sahid Mehmood, F. Haq, Y. Xing, M. Usman, Synthesis of AgNWs Using High Molecular Weight PVP As a Capping Agent and Their Application in Conductive Thin Films, J. Electron. Mater. 50 (2021) 2789–2799.

DOI: 10.1007/s11664-021-08770-6

Google Scholar

[17] D.S. Hecht, L. Hu, G. Irvin, Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures, Adv. Mater. 23 (2011) 1482–1513.

DOI: 10.1002/adma.201003188

Google Scholar

[18] M. L. Fitzgerald, Y. Zhao, Z. Pan, L. Yang, S. Lin, G. Sauti, D. Li, Contact thermal resistance between silver nanowires with polyvinylpyrrolidone interlayers, Nano Lett. 21 (2021) 4388–4393.

DOI: 10.1021/acs.nanolett.1c01034

Google Scholar

[19] C.-L. Kim, J.-Y. Lee, D.-G. Shin, J.-S. Yeo, D.-E. Kim, Mechanism of Heat-Induced Fusion of Silver Nanowires, Sci. Rep. 10 (2020) 9271.

DOI: 10.1038/s41598-020-66304-2

Google Scholar

[20] D.P. Langley, M. Lagrange, G. Giusti, C. Jiménez, Y. Bréchet, N.D. Nguyen, D. Bellet, Metallic nanowire networks: effects of thermal annealing on electrical resistance, Nanoscale 6 (2014) 13535–13543.

DOI: 10.1039/C4NR04151H

Google Scholar

[21] J. Wang, J. Jiu, T. Araki, M. Nogi, T. Sugahara, S. Nagao, H. Koga, P. He, K. Suganuma, Silver Nanowire Electrodes: Conductivity Improvement Without Post-treatment and Application in Capacitive Pressure Sensors, Nano-Micro Lett. 7 (2015) 51–58.

DOI: 10.1007/s40820-014-0018-0

Google Scholar

[22] B. Bari, S. Honey, M. Morgan, I. Ahmad, R. Khan, A. Muhammad, K. Alamgir, S. Naseem, M. Malik, MeV carbon ion irradiation-induced changes in the electrical conductivity of silver nanowire networks, Curr. Appl. Phys. 15 (2015) 642–647.

DOI: 10.1016/j.cap.2015.02.023

Google Scholar

[23] S. Hong, J. Yeo, J. Lee, H. Lee, P. Lee, S.S. Lee, S.H. Ko, Selective Laser Direct Patterning of Silver Nanowire Percolation Network Transparent Conductor for Capacitive Touch Panel, J. Nanosci. Nanotechnol. 15 (2015) 2317–2323.

DOI: 10.1166/jnn.2015.9493

Google Scholar

[24] P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K.H. Nam, D. Lee, S.S. Lee, S.H. Ko, Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network, Adv. Mater. 24 (2012) 3326–3332.

DOI: 10.1002/adma.201200359

Google Scholar

[25] H. Shehla, A. Ishaq, Y. Khan, I. Javed, R. Saira, N. Shahzad, M. Maaza, Ion beam irradiation‐induced nano‐welding of Ag nanowires, Micro Nano Lett. 11 (2016) 34-37.

DOI: 10.1049/mnl.2015.0054

Google Scholar

[26] T. Wang, Y. Yan, L. Zhu, Q. Li, J. He, X. Zhang, X. Li, X. Zhang, Y. Pan, Y. Wang, High-Performance Flexible Transparent Electrodes Fabricated via Laser Nano-Welding of Silver Nanowires, Crystals 11 (2021) 996-1009.

DOI: 10.3390/cryst11080996

Google Scholar

[27] J. Liu, Y. Ge, D. Zhang, M. Han, M. Li, M. Zhang, X. Duan, Z. Yang, J. Hu, Plasma cleaning and self-limited welding of silver nanowire films for flexible transparent conductors, ACS App. Nano Mater. 4 (2021) 1664-1671.

DOI: 10.1021/acsanm.0c03137

Google Scholar

[28] Y. Sun, Y. Xia, Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm, The Analyst 128 (2003) 686–691.

DOI: 10.1039/B212437H

Google Scholar

[29] J. Katyal, Localized surface plasmon resonance and field enhancement of Au, Ag, Al and Cu nanoparticles having isotropic and anisotropic nanostructure, Materials Today: Proceedings 44 (2021) 5012-5017.

DOI: 10.1016/j.matpr.2021.01.027

Google Scholar

[30] Y. Deng, H. Liu, G. H. Zheng, Plasmon resonances of nanorods in transverse electromagnetic scattering, J. Differ. Equ. 318 (2022) 502-536

DOI: 10.1016/j.jde.2022.02.035

Google Scholar

[31] D. Basak, S. Karan, B. Mallik, Size selective photoluminescence in poly(methyl methacrylate) thin solid films with dispersed silver nanoparticles synthesized by a novel method, Chem. Phys. Lett. 420 (2006) 115–119.

DOI: 10.1016/j.cplett.2005.12.062

Google Scholar

[32] M.B. Mohamed, V. Volkov, S. Link, M.A. El-Sayed, The `lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal, Chem. Phys. Lett. 317 (2000) 517–523.

DOI: 10.1016/S0009-2614(99)01414-1

Google Scholar

[33] E.M. Bakir, R.K. Karnati, Preparation of Luminescent Plasmonic Silver Nanoparticles for Electrochemical Detection of Sulphide and Thiourea in Aqueous Solution and Ab Initio DFT Study of the Chemical Affinity Towards Silver Nanoparticles, Plasmonics 17 (2022) 1017–1024

DOI: 10.1007/s11468-022-01592-0

Google Scholar

[34] O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, M.Y. Losytskyy, A.V. Kotko, A.O. Pinchuk, Size-dependent surface-plasmon-enhanced photoluminescence from silver nanoparticles embedded in silica, Phys. Rev. B 79 (2009) 235438.

DOI: 10.1103/PhysRevB.79.235438

Google Scholar

[35] X. Li, J. Zhou, D. Yan, Y. Peng, Y. Wang, Q. Zhou, K. Wang, Effects of Concentration and Spin Speed on the Optical and Electrical Properties of Silver Nanowire Transparent Electrodes, Materials 14 (2021) 2219.

DOI: 10.3390/ma14092219

Google Scholar

[36] M. Kaikanov, A. Kemelbay, B. Amanzhulov, G. Demeuova, G. Akhtanova, F. Bozheyev, A. Tikhonov, Electrical conductivity enhancement of transparent silver nanowire films on temperature-sensitive flexible substrates using intense pulsed ion beam, Nanotechnology 32 (2021) 145706.

DOI: 10.1088/1361-6528/abd49e

Google Scholar

[37] T. Tokuno, M. Nogi, M. Karakawa, J. Jiu, T.T. Nge, Y. Aso, K. Suganuma, Fabrication of Silver Nanowire Transparent Electrodes at Room Temperature, Nano Res. 4 (2011) 1215–1222.

DOI: 10.1007/s12274-011-0172-3

Google Scholar

[38] A. Vafaei, A. Hu, I.A. Goldthorpe, Joining of Individual Silver Nanowires via Electrical Current, Nano-Micro Lett. 6 (2014) 293–300.

DOI: 10.1007/s40820-014-0001-9

Google Scholar

[39] H.H. Khaligh, I.A. Goldthorpe, Failure of silver nanowire transparent electrodes under current flow, Nanoscale Res. Lett. 8 (2013) 235.

DOI: 10.1186/1556-276X-8-235

Google Scholar

[40] S. Koo, J. Park, S. Koo, K. Kim, Local heat dissipation of Ag nanowire networks examined with scanning thermal microscopy, J. Phys. Chem. C, 125 (2021) 6306-6312.

DOI: 10.1021/acs.jpcc.0c10774

Google Scholar

[41] D. Bellet, M. Lagrange, T. Sannicolo, S. Aghazadehchors, V.H. Nguyen, D.P. Langley, D. Muñoz-Rojas, C. Jiménez, Y. Bréchet, N.D. Nguyen, Transparent Electrodes Based on Silver Nanowire Networks: From Physical Considerations towards Device Integration, Materials 10 (2017) 570.

DOI: 10.3390/ma10060570

Google Scholar

[42] H.H. Khaligh, L. Xu, A. Khosropour, A. Madeira, M. Romano, C. Pradére, M. Tréguer-Delapierre, L. Servant, M.A. Pope, I.A. Goldthorpe, The Joule heating problem in silver nanowire transparent electrodes, Nanotechnology 28 (2017) 425703.

DOI: 10.1088/1361-6528/aa7f34

Google Scholar

[43] D.C. Choo, T.W. Kim, Degradation mechanisms of silver nanowire electrodes under ultraviolet irradiation and heat treatment, Sci. Rep. 7 (2017) 1696.

DOI: 10.1038/s41598-017-01843-9

Google Scholar

[44] M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, G.V. Hartland, Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance, J. Mater. Chem. 18 (2008) 1949–1960.

DOI: 10.1039/b714759g

Google Scholar

[45] F. Pourcin, C.A. Reynaud, M. Carlberg, J. Le Rouzo, D. Duché, J.-J. Simon, L. Escoubas, R.-M. Sauvage, G. Berginc, O. Margeat, J. Ackermann, Plasmonic Nanocomposites Based on Silver Nanocube-Polymer Blends Displaying Nearly Perfect Absorption in the UV Region, Langmuir 35 (2019) 2179–2187.

DOI: 10.1021/acs.langmuir.8b03003

Google Scholar

[46] G. Naz, H. Asghar, M. Ramzan, M. Arshad, R. Ahmed, M.B. Tahir, B.U. Haq, N. Baig, J. Jalil, High-yield synthesis of silver nanowires for transparent conducting PET films, Beilstein J. Nanotechnol. 12 (2021) 624–632.

DOI: 10.3762/bjnano.12.51

Google Scholar

[47] Y. Li, X. Yuan, H. Yang, Y. Chao, S. Guo, C. Wang, One-Step Synthesis of Silver Nanowires with Ultra-Long Length and Thin Diameter to Make Flexible Transparent Conductive Films, Materials 12 (2019) 401.

DOI: 10.3390/ma12030401

Google Scholar

[48] R. F. Hamans, M. Parente, A. Garcia-Etxarri, A. Baldi, Optical properties of colloidal silver nanowires, J. Phys. Chem. C, 126 (2022) 8703-8709.

DOI: 10.1021/acs.jpcc.2c01251

Google Scholar

[49] W. Zhou, A. Hu, S. Bai, Y. Ma, D. Bridges, Anisotropic optical properties of large-scale aligned silver nanowire films via controlled coffee ring effects, RSC Adv. 5 (2015) 39103–39109.

DOI: 10.1039/C5RA04214C

Google Scholar

[50] J.J. Mock, S.J. Oldenburg, D.R. Smith, D.A. Schultz, S. Schultz, Composite Plasmon Resonant Nanowires, Nano Lett. 2 (2002) 465–469.

DOI: 10.1021/nl0255247

Google Scholar

[51] E.-J. Lee, M.-H. Chang, Y.-S. Kim, J.-Y. Kim, High-pressure polyol synthesis of ultrathin silver nanowires: Electrical and optical properties, APL Materials 1 (2013) 42118.

DOI: 10.1063/1.4826154

Google Scholar

[52] G. Schider, J.R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F.R. Aussenegg, W.L. Schaich, I. Puscasu, B. Monacelli, G. Boreman, Plasmon dispersion relation of Au and Ag nanowires, Phys. Rev. B 68 (2003) 155427.

DOI: 10.1103/PhysRevB.68.155427

Google Scholar

[53] N.I. Grigorchuk, Radiative damping of surface plasmon resonance in spheroidal metallic nanoparticle embedded in a dielectric medium, J. Opt. Soc. Am. B 29 (2012) 3404–3411.

DOI: 10.1364/JOSAB.29.003404

Google Scholar

[54] P.N. Prasad, Nanophotonics, Wiley, Hoboken, NJ, 2004.

Google Scholar

[55] T.M. Thi, L.V. Tinh, B.H. Van, P.V. Ben, V.Q. Trung, The Effect of Polyvinylpyrrolidone on the Optical Properties of the Ni-Doped ZnS Nanocrystalline Thin Films Synthesized by Chemical Method, J. Nanomater. 2012 (2012) 1–8.

DOI: 10.1155/2012/528047

Google Scholar

[56] Y. Zhao, Y. Jiang, Y. Fang, Spectroscopy property of Ag nanoparticles, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy 65 (2006) 1003–1006.

DOI: 10.1016/j.saa.2006.01.010

Google Scholar

[57] E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, F. Caruso, Plasmon emission in photoexcited gold nanoparticles, Phys. Rev. B 70 (2004) 205424.

DOI: 10.1103/PhysRevB.70.205424

Google Scholar

[58] T. Huang, R.W. Murray, Visible Luminescence of Water-Soluble Monolayer-Protected Gold Clusters, J. Phys. Chem. B 105 (2001) 12498–12502.

DOI: 10.1021/JP0041151

Google Scholar

[59] C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 1998.

Google Scholar

[60] H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F.R. Aussenegg, J.R. Krenn, Silver Nanowires as Surface Plasmon Resonators, Phys. Rev. Lett. 95 (2005) 257403.

DOI: 10.1103/PhysRevLett.95.257403

Google Scholar

[61] J.P. Toennies, U. Gonser, R.M. Osgood, M.B. Panish, H. Sakaki, H.K.V. Lotsch, U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, Springer, Berlin, 1995.

DOI: 10.1007/978-3-662-09109-8

Google Scholar